精英家教网 > 高中数学 > 题目详情

【题目】某品牌服装店五一进行促销活动,店老板为了扩大品牌的知名度同时增强活动的趣味性,约定打折办法如下:有两个不透明袋子,一个袋中放着编号为1,2,3的三个小球,另一个袋中放着编号为4,5的两个小球(小球除编号外其它都相同),顾客需从两个袋中各抽一个小球,两球的编号之和即为该顾客买衣服所打的折数(如,一位顾客抽得的两个小球的编号分别为2,5,则该顾客所习的买衣服打7折).要求每位顾客先确定购买衣服后再取球确定打折数.已知三位顾客各买了一件衣服.

(1)求三位顾客中恰有两位顾客的衣服均打6折的概率;

(2)两位顾客都选了定价为2000元的一件衣服,设为打折后两位顾客的消费总额,求的分布列和数学期望.

【答案】(1) ;(2)答案见解析.

【解析】试题分析:(1)先求打6折的概率,再根据独立重复试验求三位顾客中恰有两位顾客的衣服均打6折的概率;(2)先确定随机变量,再分别求对应概率,列表可得分布列,最后根据数学期望公式求期望.

试题解析:打5,6,7,8折的概率分别为

(1)事件为“三位顾客中恰有两位顾客打6折”,

所以

(2)的可能取值为2000,2200,2400,2600,2800,3000,3200,

所以的分布列为

2000

2200

2400

2600

2800

3000

3200

元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆的半径为2,圆心在轴的正半轴上,且与直线相切.

(1)求圆的方程。

(2)在圆上,是否存在点,使得直线与圆相交于不同的两点,且△的面积最大?若存在,求出点的坐标及对应的△的面积;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】德国著名数学家狄利克雷在数学领域成就显著,以其命名的函数被称为狄利克雷函数,其中R为实数集,Q为有理数集,以下命题正确的个数是( )

下面给出关于狄利克雷函数f(x)的五个结论:

①对于任意的xR,都有f(f(x))=1;

②函数f(x)偶函数;

③函数f(x)的值域是{0,1};

④若T0T为有理数,则f(x+T)=f(x)对任意的xR恒成立;

⑤在f(x)图象上存在不同的三个点A,B,C,使得△ABC为等边角形.

A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于,②,③,④,⑤与⑥,选择恰当的关系式序号填空:

1)角为第一象限角的充要条件是_____

2)角为第二象限角的充要条件是_____

3)角为第三象限角的充要条件是_____

4)角为第四象限角的充要条件是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ) 当时,求函数的单调区间;

(Ⅱ)求函数在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数满足:对于任意实数都有恒成立,且当时,

(Ⅰ)判定函数的单调性,并加以证明;

(Ⅱ)设,若函数有三个零点从小到大分别为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)当时,若函数的导函数的图象与轴交于 两点,其横坐标分别为 ,线段的中点的横坐标为,且 恰为函数的零点,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知无穷数列的前n项和为,记 ,…, 中奇数的个数为

(Ⅰ)若= n,请写出数列的前5项;

(Ⅱ)求证:"为奇数, (i = 2,3,4,...)为偶数”是“数列是单调递增数列”的充分不必要条件;

(Ⅲ)若,i=1, 2, 3,…,求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,EB垂直于菱形ABCD所在平面,且EB=BC=2,∠BAD=60°,点GH分别为边CDDA的中点,点M是线段BE上的动点.

I)求证:GHDM

II)当三棱锥D-MGH的体积最大时,求点A到面MGH的距离.

查看答案和解析>>

同步练习册答案