精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)满足对任意的m,n都有f(m+n)=f(m)+f(n)-1,设g(x)=f(x)+(a>0,a≠1),g(ln2018)=-2015,则g(ln)=______

【答案】2018

【解析】

由已知中函数fx)满足对任意实数mn,都有fm+n)=fm)+fn)﹣1,可得f(0)=1,进而fx)+f(﹣x)=2,gx)+g(﹣x)=3,结合gln2018)=﹣2015,由对数的运算性质计算可得所求值.

∵函数fx)满足对任意实数mn,都有fm+n)=fm)+fn)﹣1,

mn=0,则f(0)=2f(0)﹣1,

解得f(0)=1,

mxn=﹣x,则f(0)=fx)+f(﹣x)﹣1,

fx)+f(﹣x)=2,

gx)=fxa>0,a≠0),

g(﹣x)=f(﹣xf(﹣x

gx)+g(﹣x)=fx)+f(﹣x)+1=3,

gln2018)+gln)=﹣2015+g(﹣ln2018)=3,

gln)=2018,

故答案为:2018.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆C:(x+1)2+y2=20,点B(l,0).点A是圆C上的动点,线段AB的垂直平分线与线段AC交于点P.
(1)求动点P的轨迹C1的方程;
(2)设 ,N为抛物线C2:y=x2上的一动点,过点N作抛物线C2的切线交曲线Cl于P,Q两点,求△MPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在三棱柱底面的中点

求证:

求证:平面

在线段上是否存在点使得?若存在确定点的位置; 若不存在说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{}的前n项和 (n为正整数)。

1,求证数列{}是等差数列,并求数列{}的通项公式;

(2)试比较的大小,并予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在单位正方体中,点P在线段上运动,给出以下四个命题:

异面直线间的距离为定值;

三棱锥的体积为定值;

异面直线与直线所成的角为定值;

二面角的大小为定值.

其中真命题有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中,底面四边形ABCD是菱形, 是边长为2的等边三角形, , .

求证: 底面ABCD

求直线CP与平面BDF所成角的大小;

在线段PB上是否存在一点M,使得平面BDF?如果存在,求的值,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数,下列命题中所有正确结论的序号是______

①其图象关于轴对称; ②当时,是增函数;当时,是减函数;

的最小值是; ④在区间上是增函数;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从甲、乙两名学生中选拔一人参加射箭比赛,为此需要对他们的射箭水平进行测试.现这两名学生在相同条件下各射箭10次,命中的环数如下:

8

9

7

9

7

6

10

10

8

6

10

9

8

6

8

7

9

7

8

8

(1)计算甲、乙两人射箭命中环数的平均数和标准差;

(2)比较两个人的成绩,然后决定选择哪名学生参加射箭比赛.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F1、F2 , 这两条曲线在第一象限的交点为P,△PF1F2 是以PF1为底边的等腰三角形.若|PF1|=10,椭圆与双曲线的离心率分别为e1、e2 , 则e1e2 的取值范围为

查看答案和解析>>

同步练习册答案