精英家教网 > 高中数学 > 题目详情

【题目】(题文)如图,长方形材料中,已知.点为材料内部一点,,且. 现要在长方形材料中裁剪出四边形材料,满足,点分别在边上.

(1)设,试将四边形材料的面积表示为的函数,并指明的取值范围;

(2)试确定点上的位置,使得四边形材料的面积最小,并求出其最小值.

【答案】(1)见解析;(2)当时,四边形材料的面积最小,最小值为.

【解析】分析:(1)通过直角三角形的边角关系,得出,进而得出四边形材料的面积的表达式,再结合已知尺寸条件,确定角的范围.

(2)根据正切的两角差公式和换元法,化简和整理函数表达式,最后由基本不等式,确定面积最小值及对应的点上的位置.

详解:解:(1)在直角中,因为

所以

所以

在直角中,因为

所以

所以

所以 .

(2)因为

,由,得

所以

当且仅当时,即时等号成立,

此时,

答:当时,四边形材料的面积最小,最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为2的正方形,底面的中点,的中点.

(1)求证:平面

(2)求异面直线所成角的正切值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某几何体的三视图如图所示,P是正方形ABCD对角线的交点,GPB的中点.

(1)根据三视图,画出该几何体的直观图.

(2)在直观图中,①证明:PD∥平面AGC;

②证明:平面PBD⊥平面AGC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,数列满足 .

(Ⅰ)当时,求证:数列为等差数列并求

(Ⅱ)证明:对于一切正整数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某几何体的三视图如图所示,P是正方形ABCD对角线的交点,GPB的中点.

(1)根据三视图,画出该几何体的直观图.

(2)在直观图中,①证明:PD∥平面AGC;

②证明:平面PBD⊥平面AGC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】盒子里放有外形相同且编号为1,2,3,4,5的五个小球,其中1号与2号是黑球,3号、4号与5号是红球,从中有放回地每次取出1个球,共取两次.

(1)求取到的2个球中恰好有1个是黑球的概率;

(2)求取到的2个球中至少有1个是红球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面平面,侧面是边长为的等边三角形,底面是矩形,且,则该四棱锥外接球的表面积等于__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某山区小学有100名四年级学生,将全体四年级学生随机按0099编号,并且按编号顺序平均分成10组.现要从中抽取10名学生,各组内抽取的编号按依次增加10进行系统抽样.

1)若抽出的一个号码为22,则此号码所在的组数是多少?据此写出所有被抽出学生的号码;

2)分别统计这10名学生的数学成绩,获得成绩数据的茎叶图如图4所示,求该样本的方差;

3)在(2)的条件下,从这10名学生中随机抽取两名成绩不低于73分的学生,求被抽取到的两名学生的成绩之和不小于154分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧面是边长为2的菱形,且 ,四棱锥的体积为2,点在平面内的正投影为,且在线段上,且

)证明:直线平面

)求二面角的余弦值.

查看答案和解析>>

同步练习册答案