精英家教网 > 高中数学 > 题目详情

【题目】在正方体ABCDA1B1C1D1中,MN分别是ABBC的中点.

1)求证:MN∥平面A1B1C1D1

2)求证:平面B1MN⊥平面BB1D1D.

【答案】1)证明见解析,(2)证明见解析

【解析】

1)根据三角形中位线性质得,根据平行四边形性质得,即得,再根据线面平行判定定理得结果;

2)根据正方形性质得,即得,由正方体性质得平面,即得,再根据线面垂直判定定理得平面,最后根据面面垂直判定定理得结果.

(1)因为MN分别是ABBC的中点,所以

因为正方体ABCDA1B1C1D1,所以从而四边形为平行四边形,即得,因此

因为平面,平面,所以平面,

2)因为正方形ABCD,所以,因为,所以

因为正方体ABCDA1B1C1D1,所以平面,因为平面,因此,

因为,平面,所以平面

因为平面,所以平面平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线:,点

(1)求点关于直线的对称点的坐标;

(2)直线关于点对称的直线的方程;

(3)以为圆心,3为半径长作圆,直线过点,且被圆截得的弦长为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据:

x

6

8

10

12

y

2

3

5

6

1)请在图中画出上表数据的散点图;

2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程

3)试根据(2)求出的线性回归方程,预测记忆力为9的同学的判断力.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为为参数,且),以为极点, 轴的正半轴为极轴,建立极坐标系,直线 的极坐标方程为

(1)若曲线只有一个公共点,求的值;

(2) 为曲线上的两点,且,求的面积最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年1月1日,我国实行全面二孩政策,同时也对妇幼保健工作提出了更高的要求.某城市实行网格化管理,该市妇联在网格1与网格2两个区域内随机抽取12个刚满8个月的婴儿的体重信息,体重分布数据的茎叶图如图所示(单位:斤,2斤1千克),体重不超过千克的为合格.

(1)从网格1与网格2分别随机抽取2个婴儿,求网格1至少有一个婴儿体重合格且网格2至少有一个婴儿体重合格的概率;

(2)妇联从网格1内8个婴儿中随机抽取4个进行抽检,若至少2个婴儿合格,则抽检通过,若至少3个合格,则抽检为良好,求网格1在抽检通过的条件下,获得抽检为良好的概率;

(3)若从网格1与网格2内12个婴儿中随机抽取2个,用表示网格2内婴儿的个数,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司做了用户对其产品满意度的问卷调查,随机抽取了20名用户的评分,得到图3所示茎叶图,对不低于75的评分,认为用户对产品满意,否则,认为不满意,

(Ⅰ)根据以上资料完成下面的2×2列联表,若据此数据算得,则在犯错的概率不超过5%的前提下,你是否认为“满意与否”与“性别”有关?

附:

(Ⅱ) 估计用户对该公司的产品“满意”的概率;

(Ⅲ) 该公司为对客户做进一步的调查,从上述对其产品满意的用户中再随机选取2人,求这两人都是男用户或都是女用户的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在原点,焦点在x轴上,以两个焦点和短轴的两个端点为顶点的四边形是一个面积为8的正方形(记为Q).

)求椭圆C的方程;

)设点P是直线x=﹣4x轴的交点,过点P的直线l与椭圆C相交于MN两点,当线段MN的中点落在正方形Q内(包括边界)时,求直线l斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛掷一个质地均匀的骰子的试验,事件A表示“小于5的偶数点出现”,事件B表示“不小于5的点数出现”,则一次试验中,事件A或事件B至少有一个发生的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市为调查会员某年度上半年的消费情况制作了有奖调查问卷发放给所有会员,并从参与调查的会员中随机抽取名了解情况并给予物质奖励.调查发现抽取的名会员消费金额(单位:万元)都在区间内,调查结果按消费金额分成组,制作成如下的频率分布直方图.

(1)求该名会员上半年消费金额的平均值与中位数;(以各区间的中点值代表该区间的均值)

(2)现采用分层抽样的方式从前组中选取人进行消费爱好调查,然后再从前组选取的人中随机选人,求这人都来自第组的概率.

查看答案和解析>>

同步练习册答案