【题目】高铁是一种快捷的交通工具,为我们的出行提供了极大的方便。某高铁换乘站设有编号为①,②,③,④,⑤的五个安全出口,若同时开放其中的两个安全出口,疏散名乘客所需的时间如下:
安全出口编号 | ①② | ②③ | ③④ | ④⑤ | ①⑤ |
疏散乘客时间(s) | 120 | 220 | 160 | 140 | 200 |
则疏散乘客最快的一个安全出口的编号是( )
A. ①B. ②C. ④D. ⑤
【答案】C
【解析】
利用同时开放其中的两个安全出口,疏散1000名乘客所需的时间分析对比,能求出结果.
(1)同时开放①⑤两个安全出口,疏散1000名乘客所需的时间为200s,同时开放④⑤两个安全出口,疏散1000名乘客所需的时间为140s,所以疏散1000名乘客④比①快60s.
(2)同时开放①⑤两个安全出口,疏散1000名乘客所需的时间为200s,同时开放①②两个安全出口,疏散1000名乘客所需的时间为120s,所以疏散1000名乘客②比⑤快80s.
(3)同时开放①②两个安全出口,疏散1000名乘客所需的时间为120s,同时开放②③两个安全出口,疏散1000名乘客所需的时间为220s,所以疏散1000名乘客①比③快100s.
(4)同时开放②③两个安全出口,疏散1000名乘客所需的时间为220s,同时开放③④两个安全出口,疏散1000名乘客所需的时间为160s,所以疏散1000名乘客④比②快60s.
(5)同时开放③④两个安全出口,疏散1000名乘客所需的时间为160s,同时开放④⑤两个安全出口,疏散1000名乘客所需的时间为140s,所以疏散1000名乘客⑤比③快20s.
综上,疏散乘客最快的一个安全出口的编号是④.
科目:高中数学 来源: 题型:
【题目】2019年4月,甲乙两校的学生参加了某考试机构举行的大联考,现对这两校参加考试的学生的数学成绩进行统计分析,数据统计显示,考生的数学成绩服从正态分布,从甲乙两校100分及以上的试卷中用系统抽样的方法各抽取了20份试卷,并将这40份试卷的得分制作成如图所示的茎叶图:
(1)试通过茎叶图比较这40份试卷的两校学生数学成绩的中位数;
(2)若把数学成绩不低于135分的记作数学成绩优秀,根据茎叶图中的数据,判断是否有的把握认为数学成绩在100分及以上的学生中数学成绩是否优秀与所在学校有关?
(3)从所有参加此次联考的学生中(人数很多)任意抽取3人,记数学成绩在134分以上的人数为,求的数学期望.
附:若随机变量服从正态分布,则,,.
参考公式与临界值表:,其中.
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知直线的方程为,曲线是以坐标原点为顶点,直线为准线的抛物线.以坐标原点为极点,轴非负半轴为极轴建立极坐标系.
(1)分别求出直线与曲线的极坐标方程:
(2)点是曲线上位于第一象限内的一个动点,点是直线上位于第二象限内的一个动点,且,请求出的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线:的左、右焦点分别是、,左、右两顶点分别是、,弦AB和CD所在直线分别平行于x轴与y轴,线段BA的延长线与线段CD相交于点如图).
⑴若是的一条渐近线的一个方向向量,试求的两渐近线的夹角;
⑵若,,,,试求双曲线的方程;
⑶在⑴的条件下,且,点C与双曲线的顶点不重合,直线和直线与直线l:分别相交于点M和N,试问:以线段MN为直径的圆是否恒经过定点?若是,请求出定点的坐标;若不是,试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知曲线(为参数),.以原点为极点,轴的非负半轴为极轴建立极坐标系.
(I)写出曲线与圆的极坐标方程;
(II)在极坐标系中,已知射线分别与曲线及圆相交于,当时,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂预购软件服务,有如下两种方案:
方案一:软件服务公司每日收取工厂60元,对于提供的软件服务每次10元;
方案二:软件服务公司每日收取工厂200元,若每日软件服务不超过15次,不另外收费,若超过15次,超过部分的软件服务每次收费标准为20元.
(1)设日收费为元,每天软件服务的次数为,试写出两种方案中与的函数关系式;
(2)该工厂对过去100天的软件服务的次数进行了统计,得到如图所示的条形图,依据该统计数据,把频率视为概率,从节约成本的角度考虑,从两个方案中选择一个,哪个方案更合适?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,圆锥的顶点为A,底面的圆心为O,BC是底面圆的一条直径,点D,E在底面圆上,已知,.
(1)证明:;
(2)若二面角的大小为,求直线OC与平面ACE所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某部队在一次军演中要先后执行六项不同的任务,要求是:任务必须排在前三项执行,且执行任务之后需立即执行任务,任务、相邻,则不同的执行方案共有______种.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com