精英家教网 > 高中数学 > 题目详情
如图所示,在xOy平面上,点A(1,0),点B在单位圆上.∠AOB=θ(0<θ<π)
(1)若点B(-
3
5
4
5
),求tan(2θ+
π
4
)的值;
(2)若
OA
+
OB
=
OC
,四边形OACB的面积用S表示,求S+
OA
OC
的取值范围.
考点:平面向量数量积的运算,单位圆与周期性
专题:计算题,三角函数的求值,平面向量及应用
分析:(1)利用任意角的三角函数定义可得sinθ,cosθ,再利用二倍角的正切公式和两角和的正切公式,计算即可得出;
(2)利用向量的数量积运算法则、平行四边形的面积计算公式可得S+
OA
OC
的=sinθ+cosθ+1,再利用两角和的正弦公式和正弦函数的性质即可得出.
解答: 解:(1)∵B(-
3
5
4
5
),∠AOB=θ,
∴tanθ=
4
5
-
3
5
=-
4
3

∴tan2θ=
2tanθ
1-tan2θ
=
2×(-
4
3
)
1-
16
9
=
24
7

则tan(2θ+
π
4
)=
tan2θ+1
1-tan2θ
=
1+
24
7
1-
24
7
=-
31
17

(2)S=|OA||OB|sin(π-θ)=sinθ,
OA
=(1,0),
OB
=(cosθ,sinθ),
OC
=
OA
+
OB
=(1+cosθ,sinθ),
OA
OC
=1+cosθ,
∴S+
OA
OC
=sinθ+cosθ+1=
2
sin(θ+
π
4
)+1(0<θ<π),
π
4
θ+
π
4
4

∴-
2
2
<sin(θ+
π
4
)≤1,
∴0<S+
OA
OC
2
+1
点评:本题综合考查了任意角的三角函数定义、二倍角公式、两角和差的正切公式、向量的数量积运算法则、平行四边形的面积计算公式、两角和的正弦公式等基础知识与基本技能方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线方程为x2-
y2
4
=1
,过P(1,2)的直线L与双曲线只有一个公共点,则L的条数共有(  )
A、4条B、3条C、2条D、1条

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:1•2+2•22+3•22+…+(n-1)•2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,两种坐标系取相同的单位长度.已知曲线C:ρsin2θ=2acosθ(a>0),过点P(-2,-4)的直线l的参数方程为
x=-2+
2
t
y=-4+
2
t.
(t为参数).直线l与曲线C分别交于M、N.若|PM|、|MN|、|PN|成等比数列,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,则输出的结果是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设不等式组
2x-y-2≤0
x+y-1≥0
x-y+1≥0
表示的平面区域为D.则区域D上的点到坐标原点的距离的最小值是(  )
A、1
B、
2
2
C、
1
2
D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体的正视图与侧视图如图所示,若该几何体的体积为
1
3
,则该几何体的俯视图可以是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

已知研究x与y之间关系的一组数据如表所示,则y对x的回归直线方程
y
=bx+a必过点(  )
x0123
y1357
A、(2,2)
B、(
3
2
,0)
C、(1,2)
D、(
3
2
,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,射线OA、OB分别与x轴正半轴成45°和30°角,过点P(2,0)作直线AB分别交OA、OB于A、B两点,当AB的中点C恰好落在直线y=
1
2
x上时,求直线AB的方程.

查看答案和解析>>

同步练习册答案