精英家教网 > 高中数学 > 题目详情

【题目】已知函数在点处的切线方程是.

(1)求的值及函数的最大值;

(2)若实数满足.

(i)证明:

(ii)若,证明:.

【答案】(1);0.

(2) (ⅰ)证明见解析;(ⅱ)证明见解析.

【解析】分析第一问利用题中所给的条件结合导数的几何意义以及切点应该在切线上,建立关于的等量关系式,解方程组求得的值,从而确定出函数的解析式,利用导数研究函数的单调性,从而求导函数的最大值,第二问将问题转化,利用导数,构造函数,证得结果.

详解:(Ⅰ)

由题意有,解得

所以为增函数,在为减函数.

故有当时,

(Ⅱ)证明:

(ⅰ)

由(Ⅰ)知,所以,即.

又因为(过程略),所以,故.

(ⅱ)法一:

由(1)知

法二:

构造函数

因为,所以

即当时,,所以为增函数,

所以,即,故

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为回馈顾客,新华都购物商场拟通过摸球兑奖的方式对500位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球(球的大小、形状一模一样),球上所标的面值之和为该顾客所获的奖励额.

(1)若袋中所装的4个球中有1个所标的面值为40元,其余3个所标的面值均为20元,求顾客所获的奖励额的分布列及数学期望;

(2)商场对奖励总额的预算是30000元,并规定袋中的4个球由标有面值为20元和40元的两种球共同组成,或标有面值为15元和45元的两种球共同组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡.请对袋中的4个球的面值给出一个合适的设计,并说明理由.

提示:袋中的4个球由标有面值为a元和b元的两种球共同组成,即袋中的4个球所标的面值既有a元又有b

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若定义域内存在实数,满足,则称局部奇函数”.

1)已知二次函数,试判断是否为局部奇函数?并说明理由.

2)设是定义在上的局部奇函数,求实数的取值范围;

3)设,若不是定义域R上的局部奇函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中错误的是__________(填序号)

①命题“”的否定是

已知 的最小值为

,命题“若,则”的否命题是真命题;

④已知 ,若命题为真命题,则的取值范围是.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数的定义域为,满足对任意,有.则称为“形函数”;若函数定义域为恒大于0,且对任意,恒有,则称为“对数形函数”.

1)当时,判断是否是“形函数”,并说明理由;

2)当时,判断是否是“对数形函数”,并说明理由;

3)若函数形函数,且满足对任意都有,问是否是“对数形函数”?请加以证明,如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)判断的单调性,并证明之;

2)若存在实数,使得函数在区间上的值域为,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的展开式中,第二、三、四项的二项式系数成等差数列

1的值;

2此展开式中是否有常数项,为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,某市为响应国家号召,大力推行全民健身运动,加强对市内各公共体育运动设施的维护,几年来,经统计,运动设施的使用年限x(年)和所支出的维护费用y(万元)的相关数据如图所示,根据以往资料显示y对x呈线性相关关系。

(1)求出y关于x的回归直线方程少

(2)试根据(1)中求出的回归方程,预测使用年限至少为几年时,维护费用将超过100万元?

参考公式:对于一组数据(x1,yl),(x2,y2),…,(xn,Yn),其回归方程的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形为正方形,,且中点.

(1)证明://平面

(2)证明:平面平面

(3)求二面角的余弦值.

查看答案和解析>>

同步练习册答案