【题目】在直角坐标系中, 椭圆的中心在坐标原点,其右焦点为,且点 在椭圆上.
(1)求椭圆的方程;
(2)设椭圆的左、右顶点分别为,是椭圆上异于的任意一点,直线交椭圆于另一点,直线交直线于点, 求证:三点在同一条直线上
【答案】(1)(2)见解析
【解析】
(1)(法一)由题意,求得椭圆的焦点坐标,利用椭圆的定义,求得,进而求得的值,即可得到椭圆的标准方程;
(法二)设椭圆的方程为(),列出方程组,求得的值,得到椭圆的标准方程。
(2)设,,直线的方程为,联立方程组,利用根与系数的关系和向量的运算,即可证得三点共线。
(1)(法一)设椭圆的方程为,
∵一个焦点坐标为,∴另一个焦点坐标为,
∴由椭圆定义可知,
∴,∴,∴椭圆的方程为.
(法二)不妨设椭圆的方程为(),
∵一个焦点坐标为,∴,①
又∵点在椭圆上,∴,②
联立方程①,②,解得,,
∴椭圆的方程为.
(2)设,,直线的方程为,
由方程组消去,并整理得:,
∵,∴,,
∵直线的方程可表示为,
将此方程与直线联立,可求得点的坐标为,
∴,
∵
,所以,
又向量和有公共点,故,,三点在同一条直线上.
科目:高中数学 来源: 题型:
【题目】某中学组织了地理知识竞赛,从参加考试的学生中抽出40名学生,将其成绩(均为整数)分成六组,,…,,其部分频率分布直方图如图所示.观察图形,回答下列问题.
(1)求成绩在的频率,并补全这个频率分布直方图:
(2)估计这次考试的及格率(60分及以上为及格)和平均分;(计算时可以用组中值代替各组数据的平均值)
(3)从成绩在和的学生中选两人,求他们在同一分数段的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线C的参数方程为 (其中为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系中,直线的极坐标方程为.
(Ⅰ)求C的普通方程和直线的倾斜角;
(Ⅱ)设点(0,2),和交于两点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在《周易》中,长横“”表示阳爻,两个短横“”表示阴爻.有放回地取阳爻和阴爻三次合成一卦,共有种组合方法,这便是《系辞传》所说“太极生两仪,两仪生四象,四象生八卦”.有放回地取阳爻和阴爻一次有2种不同的情况,有放回地取阳爻和阴爻两次有四种情况,有放回地取阳爻和阴爻三次,八种情况.所谓的“算卦”,就是两个八卦的叠合,即共有放回地取阳爻和阴爻六次,得到六爻,然后对应不同的解析.在一次所谓“算卦”中得到六爻,这六爻恰好有三个阳爻三个阴爻的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面直角坐标系内两定点,及动点,的两边所在直线的斜率之积为.
(1)求动点的轨迹的方程;
(2)设是轴上的一点,若(1)中轨迹上存在两点使得,求以为直径的圆面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,则下列结论中正确的是( )
A. 将函数的图象向左平移个单位后得到函数的图象
B. 函数图象关于点中心对称
C. 函数的图象关于对称
D. 函数在区间内单调递增
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com