精英家教网 > 高中数学 > 题目详情

【题目】直线y=x与函数的图象恰有三个公共点,则实数m的取值范围是

【答案】﹣1≤m<2
【解析】根据题意,直线y=x与射线y=2(x>m)有一个交点A(2,2),
并且与抛物线y=x2+4x+2在(﹣∞,m]上的部分有两个交点B、C
, 联解得B(﹣1,﹣1),C(﹣2,﹣2)
∵抛物线y=x2+4x+2在(﹣∞,m]上的部分必须包含B、C两点,
且点A(2,2)一定在射线y=2(x>m)上,才能使y=f(x)图象与y=x有3个交点
∴实数m的取值范围是﹣1≤m<2
故答案为:﹣1≤m<2

根据题意,求出直线y=x与射线y=2(x>m)、抛物线y=x2+4x+2在(﹣∞,m]上的部分的三个交点A、B、C,且三个交点必须都在y=f(x)图象上,由此不难得到实数m的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , a1=1,且nan+1=2Sn(n∈N*),数列{bn}满足b1= , b2= , 对任意n∈N* , 都有bn+12=bnbn+2
求数列{an}、{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x)=(2x-x2)ex

(-)是f(x)的单调递减区间;

f(-)是f(x)的极小值,f()是f(x)的极大值;

f(x)没有最大值,也没有最小值;

f(x)有最大值,没有最小值.

其中判断正确的是_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,角ABC对应的边分别是abc,已知cos2A﹣3cosB+C=1

1)求角A的大小;

2)若△ABC的面积S=5b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣a|,其中a>1
(1)当a=2时,求不等式f(x)≥4﹣|x﹣4|的解集;
(2)已知关于x的不等式|f(2x+a)﹣2f(x)|≤2的解集{x|1≤x≤2},求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱柱BCF﹣ADE的侧面CFED与ABFE都是边长为1的正方形,M、N两点分别在AF和CE上,且AM=EN.
(1)求证:平面ABCD⊥平面ADE;
(2)求证:MN∥平面BCF;
(3)若点N为EC的中点,点P为EF上的动点,试求PA+PN的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在梯形中,.将梯形所在的直线旋转一周而形成的曲面所围成的几何体的表面积为_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在下列向量组中,可以把向量=(3,2)表示出来的是(  )
A.=(0,0), =(1,2)
B.=(﹣1,2),=(5,﹣2)
C.=(3,5), =(6,10)
D.=(2,﹣3), =(﹣2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知p:指数函数f(x)=(2a-6)x在R上是单调减函数;q:关于x的方程x2-3ax+2a2+1=0的两根均大于3,若pq为真,pq为假,求实数a的取值范围.

查看答案和解析>>

同步练习册答案