【题目】已知四棱锥,底面ABCD是边长为1的正方形,,平面平面ABCD,当点C到平面ABE的距离最大时,该四棱锥的体积为( )
A.B.C.D.1
科目:高中数学 来源: 题型:
【题目】设X~N(μ1,),Y~N(μ2,),这两个正态分布密度曲线如图所示,下列结论中正确的是 ( )
A. P(Y≥μ2)≥P(Y≥μ1)
B. P(X≤σ2)≤P(X≤σ1)
C. 对任意正数t,P(X≥t)≥P(Y≥t)
D. 对任意正数t,P(X≤t)≥P(Y≤t)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某车间为了规定工时额定,需要确定加工零件所花费的时间,为此作了次试验,得到数据如下:
零件数/个 | 10 | 20 | 30 | 40 | 50 | 60 |
加工时间/min | 64 | 70 | 77 | 82 | 90 | 97 |
(1)试对上述变量与的关系进行相关性检验,如果与具有线性相关关系,求出对的回归直线方程;
(2)根据(1)的结论,你认为每小时加工零件的数量额定为多少(四舍五入为整数)比较合理?
附:相关性检验的临界值表
小概率 | ||
0.05 | 0.01 | |
3 | 0.878 | 0.959 |
4 | 0.811 | 0.917 |
5 | 0.754 | 0.874 |
6 | 0.707 | 0.834 |
,
参考数据:;
17950 | 9100 | 39158 | 1750 | 758 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险的基准保费为a元,在下一年续保时,实行费率浮动机制,保费与车辆发生道路交通事故出险的情况相联系,最终保费基准保费(与道路交通事故相联系的浮动比率),具体情况如下表:
交强险浮动因素和浮动费率比率表 | ||
类别 | 浮动因素 | 浮动比率 |
上一个年度未发生有责任道路交通事故 | 下浮 | |
上两个年度未发生有责任道路交通事故 | 下浮 | |
上三个及以上年度未发生有责任道路交通事故 | 下浮 | |
上一个年度发生一次有责任不涉及死亡的道路交通事故 | ||
上一个年度发生两次及两次以上有责任不涉及死亡的道路交通事故 | 上浮 | |
上一个年度发生有责任道路交通死亡事故 | 上浮 |
为了解某一品牌普通6座以下私家车的投保情况,随机抽取了100辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计如下表:
类型 | ||||||
数量 | 20 | 10 | 10 | 38 | 20 | 2 |
若以这100辆该品牌的投保类型的频率代替一辆车投保类型的概率,则随机抽取一辆该品牌车在第四年续保时的费用的期望为( )
A.a元B.元C.元D.元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中学为研究学生的身体素质与体育锻炼时间的关系,对该校200名高三学生平均每天体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)
平均每天锻炼的时间/分钟 | ||||||
总人数 | 20 | 36 | 44 | 50 | 40 | 10 |
将学生日均体育锻炼时间在的学生评价为“锻炼达标”.
(1)请根据上述表格中的统计数据填写下面的列联表;
锻炼不达标 | 锻炼达标 | 合计 | |
男 | |||
女 | 20 | 110 | |
合计 |
并通过计算判断,是否能在犯错误的概率不超过0.025的前提下认为“锻炼达标”与性别有关?
(2)在“锻炼达标”的学生中,按男女用分层抽样方法抽出10人,进行体育锻炼体会交流,
(i)求这10人中,男生、女生各有多少人?
(ii)从参加体会交流的10人中,随机选出2人作重点发言,记这2人中女生的人数为,求的分布列和数学期望.
参考公式:,其中.
临界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数的图象上所有点的横坐标缩短到原来的倍(纵坐标不变),再将所得的图象向左平移个单位长度后得到函数的图象.
(1)写出函数的解析式;
(2)若对任意 , 恒成立,求实数的取值范围;
(3)求实数和正整数,使得在上恰有个零点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D﹣ABC,如图2所示.
(Ⅰ)求证:BC⊥平面ACD;
(Ⅱ)求几何体D﹣ABC的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的图象的一条对称轴为,其中为常数,且,给出下述四个结论:
①函数的最小正周期为;
②将函数的图象向左平移所得图象关于原点对称;
③函数在区间,上单调递增;
④函数在区间上有个零点.
其中所有正确结论的编号是( )
A.①②B.①③C.①③④D.①②④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com