精英家教网 > 高中数学 > 题目详情

【题目】已知四棱锥,底面ABCD是边长为1的正方形,,平面平面ABCD,当点C到平面ABE的距离最大时,该四棱锥的体积为(

A.B.C.D.1

【答案】B

【解析】

过点E,垂足为H,过H,垂足为F,连接EF.因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.,将表示成关于的函数,再求函数的最值,即可得答案.

过点E,垂足为H,过H,垂足为F,连接EF.

因为平面平面ABCD,所以平面ABCD

所以.

因为底面ABCD是边长为1的正方形,,所以.

因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.

易证平面平面ABE

所以点H到平面ABE的距离,即为HEF的距离.

不妨设,则.

因为,所以

所以,当时,等号成立.

此时EHED重合,所以.

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设X~N(μ1),Y~N(μ2),这两个正态分布密度曲线如图所示,下列结论中正确的是 (  )

A. P(Y≥μ2)≥P(Y≥μ1)

B. P(X≤σ2)≤P(X≤σ1)

C. 对任意正数t,P(X≥t)≥P(Y≥t)

D. 对任意正数t,P(X≤t)≥P(Y≤t)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)讨论函数的单调性;

(Ⅱ)若函数有极小值,求该极小值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某车间为了规定工时额定,需要确定加工零件所花费的时间,为此作了次试验,得到数据如下:

零件数/

10

20

30

40

50

60

加工时间/min

64

70

77

82

90

97

1)试对上述变量的关系进行相关性检验,如果具有线性相关关系,求出的回归直线方程;

2)根据(1)的结论,你认为每小时加工零件的数量额定为多少(四舍五入为整数)比较合理?

附:相关性检验的临界值表

小概率

0.05

0.01

3

0.878

0.959

4

0.811

0.917

5

0.754

0.874

6

0.707

0.834

参考数据:

17950

9100

39158

1750

758

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险的基准保费为a元,在下一年续保时,实行费率浮动机制,保费与车辆发生道路交通事故出险的情况相联系,最终保费基准保费与道路交通事故相联系的浮动比率),具体情况如下表:

交强险浮动因素和浮动费率比率表

类别

浮动因素

浮动比率

上一个年度未发生有责任道路交通事故

下浮

上两个年度未发生有责任道路交通事故

下浮

上三个及以上年度未发生有责任道路交通事故

下浮

上一个年度发生一次有责任不涉及死亡的道路交通事故

上一个年度发生两次及两次以上有责任不涉及死亡的道路交通事故

上浮

上一个年度发生有责任道路交通死亡事故

上浮

为了解某一品牌普通6座以下私家车的投保情况,随机抽取了100辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计如下表:

类型

数量

20

10

10

38

20

2

若以这100辆该品牌的投保类型的频率代替一辆车投保类型的概率,则随机抽取一辆该品牌车在第四年续保时的费用的期望为(

A.aB.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中学为研究学生的身体素质与体育锻炼时间的关系,对该校200名高三学生平均每天体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)

平均每天锻炼的时间/分钟

总人数

20

36

44

50

40

10

将学生日均体育锻炼时间在的学生评价为“锻炼达标”.

(1)请根据上述表格中的统计数据填写下面的列联表;

锻炼不达标

锻炼达标

合计

20

110

合计

并通过计算判断,是否能在犯错误的概率不超过0.025的前提下认为“锻炼达标”与性别有关?

(2)在“锻炼达标”的学生中,按男女用分层抽样方法抽出10人,进行体育锻炼体会交流,

(i)求这10人中,男生、女生各有多少人?

(ii)从参加体会交流的10人中,随机选出2人作重点发言,记这2人中女生的人数为,求的分布列和数学期望.

参考公式:,其中.

临界值表

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数的图象上所有点的横坐标缩短到原来的倍(纵坐标不变),再将所得的图象向左平移个单位长度后得到函数的图象.

1)写出函数的解析式;

2)若对任意 恒成立,求实数的取值范围;

3)求实数和正整数,使得上恰有个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在直角梯形ABCD中,ADC=90°,CDAB,AB=4,AD=CD=2.将ADC沿AC折起,使平面ADC平面ABC,得到几何体D﹣ABC,如图2所示.

(Ⅰ)求证:BC平面ACD;

(Ⅱ)求几何体D﹣ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象的一条对称轴为,其中为常数,且,给出下述四个结论:

①函数的最小正周期为

②将函数的图象向左平移所得图象关于原点对称;

③函数在区间,上单调递增;

④函数在区间上有个零点.

其中所有正确结论的编号是(

A.①②B.①③C.①③④D.①②④

查看答案和解析>>

同步练习册答案