【题目】如图,F1、F2是双曲线 =1(a>0)的左、右焦点,过F1的直线l与双曲线交于点A、B,若△ABF2为等边三角形,则△BF1F2的面积为( )
A.8
B.8
C.8
D.16
【答案】C
【解析】解:根据双曲线的定义,可得|BF1|﹣|BF2|=2a, ∵△ABF2是等边三角形,即|BF2|=|AB|
∴|BF1|﹣|BF2|=2a,即|BF1|﹣|AB|=|AF1|=2a
又∵|AF2|﹣|AF1|=2a,
∴|AF2|=|AF1|+2a=4a,
∵△AF1F2中,|AF1|=2a,|AF2|=4a,∠F1AF2=120°
∴|F1F2|2=|AF1|2+|AF2|2﹣2|AF1||AF2|cos120°
即4c2=4a2+16a2﹣2×2a×4a×(﹣ )=28a2 , 解之得c= a,
∴a2+24=7a2 , ∴a=2,
∴△BF1F2的面积为 ﹣ = ﹣ =8 .
故选:C.
科目:高中数学 来源: 题型:
【题目】锐角△ABC中,角A,B,C的对边分别为a,b,c,向量 , ,且 .
(1)求角B的大小;
(2)若sinAsinC=sin2B,求a﹣c的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列选项中,说法正确的是( )
A.若a>b>0,则
B.向量 (m∈R)共线的充要条件是m=0
C.命题“?n∈N* , 3n>(n+2)?2n﹣1”的否定是“?n∈N* , 3n≥(n+2)?2n﹣1”
D.已知函数f(x)在区间[a,b]上的图象是连续不断的,则命题“若f(a)?f(b)<0,则f(x)在区间(a,b)内至少有一个零点”的逆命题为假命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC﹣A1B1C1中,B1B=B1A=AB=BC,∠B1BC=90°,D为AC的中点,AB⊥B1D.
(1)求证:平面ABB1A1⊥平面ABC;
(2)在线段CC1(不含端点)上,是否存在点E,使得二面角E﹣B1D﹣B的余弦值为 ?若存在,求出 的值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有7名学科竞赛优胜者,其中语文学科是A1 , A2 , 数学学科是B1 , B2 , 英语学科是C1 , C2 , 物理学科是D1 , 从竞赛优胜者中选出3名组成一个代表队,要求每个学科至多选出1名.
(1)求B1被选中的概率;
(2)求代表队中有物理优胜者的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:k2﹣8k﹣20≤0,命题q:方程 =1表示焦点在x轴上的双曲线. (Ⅰ)命题q为真命题,求实数k的取值范围;
(Ⅱ)若命题“p∨q”为真,命题“p∧q”为假,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了检测某种产品的质量(单位:千克),抽取了一个容量为N的样本,整理得到的数据作出了频率分布表和频率分布直方图如图:
分组 | 频数 | 频率 |
[17.5,20) | 10 | 0.05 |
[20,225) | 50 | 0.25 |
[22.5,25) | a | b |
[25,27.5) | 40 | c |
[27.5,30] | 20 | 0.10 |
合计 | N | 1 |
(Ⅰ)求出表中N及a,b,c的值;
(Ⅱ)求频率分布直方图中d的值;
(Ⅲ)从该产品中随机抽取一件,试估计这件产品的质量少于25千克的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com