精英家教网 > 高中数学 > 题目详情

【题目】设椭圆的上顶点为A,右顶点为B.已知O为原点).

1)求椭圆的离心率;

2)设点,直线与椭圆交于两个不同点MN,直线AMx轴交于点E,直线ANx轴交于点F,若.求证:直线l经过定点.

【答案】1;(2)证明见解析.

【解析】

1)由,根据,即可求出离心率(2)由结合(1)可求出椭圆方程,设,得出点坐标,联立与椭圆方程,根据韦达定理可得,利用化简可求m可求出直线所过定点.

1)设椭圆的半焦距为c,由已知有

又由

消去b

解得.

所以,椭圆的离心率为

2)由点,又

所以

所以椭圆的方程为

则直线AM的方程为

,得点E的横坐标

所以点

同理,点

所以

.

所以.

解得,此时

所以直线l经过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,椭圆的左右焦点恰好是等轴双曲线的左右顶点,且椭圆的离心率为是双曲线上异于顶点的任意一点,直线与椭圆的交点分别记为

1)求椭圆的方程;

2)设直线的斜率分别为,求证:为定值;

3)若存在点满足,试求的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,射线l(x≥0),曲线C1的参数方程为为参数),曲线C2的方程为;以原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C3的极坐标方程为

1)写出射线l的极坐标方程以及曲线C1的普通方程;

2)已知射线lC2交于OM,与C3交于ON,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某县畜牧技术员张三和李四9年来一直对该县山羊养殖业的规模进行跟踪调查,张三提供了该县某山羊养殖场年养殖数量y(单位:万只)与相成年份x(序号)的数据表和散点图(如图所示),根据散点图,发现y与x有较强的线性相关关系,李四提供了该县山羊养殖场的个数z(单位:个)关于x的回归方程.

(1)根据表中的数据和所给统计量,求y关于x的线性回归方程(参考统计量:);

(2)试估计:①该县第一年养殖山羊多少万只?

②到第几年,该县山羊养殖的数量与第一年相比缩小了?

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:万元)对年销售量(单位:吨)和年利润(单位:万元)的影响.对近六年的年宣传费和年销售量)的数据作了初步统计,得到如下数据:

年份

年宣传费(万元)

年销售量(吨)

经电脑模拟,发现年宣传费(万元)与年销售量(吨)之间近似满足关系式).对上述数据作了初步处理,得到相关的值如表:

1)根据所给数据,求关于的回归方程;

2)已知这种产品的年利润的关系为若想在年达到年利润最大,请预测年的宣传费用是多少万元?

附:对于一组数据,…,,其回归直线中的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C (a>b>0)的离心率为,直线l1经过椭圆的上顶点A和右顶点B,并且和圆x2y2相切.

(1)求椭圆C的方程;

(2)设直线 与椭圆C相交于MN两点,以线段OMON为邻边作平行四边形OMPN,其中顶点P在椭圆C上,O为坐标原点,求|OP|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在矩形ABCD中,AB=3,BC=4,E,F分别在线段BC,AD上,EF∥AB,将矩形ABEF沿EF折起,记折起后的矩形为MNEF,且平面MNEF⊥平面ECDF.

(1)在线段BC是否存在一点E,使得ND⊥FC ,若存在,求出EC的长并证明;

若不存在,请说明理由.

(2)求四面体NEFD体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,为棱中点,底面是边长为2的正方形,为正三角形,平面与棱交于点,平面与平面交于直线,且平面平面.

1)求证:

2)求四棱锥的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】槟榔原产于马来西亚,中国主要分布在云南、海南及台湾等热带地区,在亚洲热带地区广泛栽培.槟榔是重要的中药材,在南方一些少数民族还有将果实作为一种咀嚼嗜好品,但其被世界卫生组织国际癌症研究机构列为致癌物清单Ⅰ类致癌物.云南某民族中学为了解两个少数民族班学生咀嚼槟榔的情况,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周咀嚼槟榔的颗数作为样本绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).

(1)从班的样本数据中随机抽取一个不超过19的数据记为,从班的样本数据中随机抽取一个不超过21的数据记为,求的概率;

(2)从所有咀嚼槟榔颗数在20颗以上(包含20颗)的同学中随机抽取3人,求被抽到班同学人数的分布列和数学期望.

查看答案和解析>>

同步练习册答案