精英家教网 > 高中数学 > 题目详情

【题目】如图,为圆锥的顶点,是圆锥底面的圆心,是底面的内接正三角形,上一点,∠APC=90°

1)证明:平面PAB⊥平面PAC

2)设DO=,圆锥的侧面积为,求三棱锥PABC的体积.

【答案】1)证明见解析;(2.

【解析】

1)根据已知可得,进而有,可得

,即,从而证得平面,即可证得结论;

2)将已知条件转化为母线和底面半径的关系,进而求出底面半径,由正弦定理,求出正三角形边长,在等腰直角三角形中求出,在中,求出,即可求出结论.

1)连接为圆锥顶点,为底面圆心,平面

上,

是圆内接正三角形,

,即

平面平面平面平面

2)设圆锥的母线为,底面半径为,圆锥的侧面积为

,解得

在等腰直角三角形中,

中,

三棱锥的体积为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,多面体是由底面为的直四棱柱被截面所截而得到的,该直四棱柱的底面为菱形,其中

(1)求的长;

(2)求平面与底面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:+=1(a>b>0)的离心率为,直线l:x+2y=4与椭圆有且只有一个交点T.

(I)求椭圆C的方程和点T的坐标;

)O为坐标原点,与OT平行的直线l′与椭圆C交于不同的两点A,B,直线l′与直线l交于点P,试判断是否为定值,若是请求出定值,若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线与坐标轴的交点都在圆C.

1)求圆C的方程;

2)若圆C与直线交于AB两点,且,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥中,G的重心,过点G作三棱锥的一个截面,使截面平行于直线PBAC,则截面的周长为_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知AB分别为椭圆Ea>1)的左、右顶点,GE的上顶点,P为直线x=6上的动点,PAE的另一交点为CPBE的另一交点为D

1)求E的方程;

2)证明:直线CD过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=2lnx+1

1)若fx≤2x+c,求c的取值范围;

2)设a>0时,讨论函数gx=的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

时,取得极值,求的值并判断是极大值点还是极小值点;

当函数有两个极值点,且时,总有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《数书九章》中有天池盆测雨题,大概意思如下:在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为28寸,盆底直径为12寸,盆深18.若盆中积水深9寸,则平均降雨量是(注:①平均降雨量等于盆中积水体积除以盆口面积;②1尺等于10寸;③台体的体积)(

A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案