精英家教网 > 高中数学 > 题目详情

命题:方程表示的曲线是焦点在y轴上的双曲线,命题:方程无实根,若为真,为真,求实数的取值范围.

.

解析试题分析:先计算出命题为真时的取值范围;又为真,为真,知假,从而可求出实数的取值范围.
试题解析:,∴.故.                        4分
,即,∴.故.      8分
又∵为真,为真,∴假,                       10分
,∴.                         12分
考点:逻辑与命题、双曲线的定义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆)的焦距为,且过点(),右焦点为.设上的两个动点,线段的中点的横坐标为,线段的中垂线交椭圆两点.

(1)求椭圆的方程;
(2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的对称轴为坐标轴,焦点是,又点在椭圆上.
(1)求椭圆的方程;
(2)已知直线的斜率为,若直线与椭圆交于两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知动点P与平面上两定点连线的斜率的积为定值.
(1)试求动点P的轨迹方程C.
(2)设直线与曲线C交于M、N两点,当|MN|=时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知A,B,C是椭圆W:+y2=1上的三个点,O是坐标原点.
(1)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积;
(2)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆,直线与圆相切,且交椭圆两点,c是椭圆的半焦距, 
(1)求m的值;
(2)O为坐标原点,若,求椭圆的方程;
(3)在(2)的条件下,设椭圆的左右顶点分别为A,B,动点,直线与直线分别交于M,N两点,求线段MN的长度的最小值 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线l1:4x-3y+6=0和直线l2x=- (p>2).若拋物线Cy2=2px上的点到直线l1和直线l2的距离之和的最小值为2.
(1)求抛物线C的方程;
(2)若拋物线上任意一点M处的切线l与直线l2交于点N,试问在x轴上是否存在定点Q,使Q点在以MN为直径的圆上,若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C=1(a>b>0)的两个焦点F1F2和上下两个顶点B1B2是一个边长为2且∠F1B1F2为60°的菱形的四个顶点.
(1)求椭圆C的方程;
(2)过右焦点F2的斜率为k(k≠0)的直线l与椭圆C相交于EF两点,A为椭圆的右顶点,直线AEAF分别交直线x=3于点MN,线段MN的中点为P,记直线PF2的斜率为k′,求证: k·k′为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,抛物线Ey2=4x的焦点为F,准线lx轴的交点为A.点C在抛物线E上,以C为圆心,|CO|为半径作圆,设圆C与准线l交于不同的两点MN.
 
(1)若点C的纵坐标为2,求|MN|;
(2)若|AF|2=|AM|·|AN|,求圆C的半径.

查看答案和解析>>

同步练习册答案