精英家教网 > 高中数学 > 题目详情

【题目】已知T是由A的子集组成的集合,满足性质:空集和属于,且任意两个元素的交和并也属于T

(1)当T的元素个数为2时,请写出所有符合条件的T.

(2)当T的元素个数为3时,请写出所有符合条件的T.

(3)求所有符合条件的T的个数.

【答案】(1)(2)答案见详解;(3).

【解析】

(1)根据条件可知中元素至少有个,当有个元素时,则

(2)中元素有个时,此时一定包含,还有一个元素可以从剩余的的子集中选取一个;

(3)考虑中元素个数为:的情况,然后将所有的可能数加在一起即可得到符合条件的的个数.

(1)因为空集和属于,所以中至少有个元素,

所以当中仅有个元素时,

(2)中有个元素时,因为空集和属于,所以中还有一个其余元素,

此其余元素可从个子集中任选一个,此时的个数为,即为:

(3)中有个元素时,此时可为:

,故满足的个数为

中有个元素时,此时可为:

,故满足的个数为

中有个元素时,此时可为:

,故满足的的个数为

中有个元素时,此时没有符合条件的

中有个元素时,此时可为:,故满足条件的的个数为.

综上可知:满足条件的的个数为个.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】缴纳个人所得税是收入达到缴纳标准的公民应尽的义务.

①个人所得税率是个人所得税额与应纳税收入额之间的比例;

②应纳税收入额=月度收入-起征点金额-专项扣除金额(三险一金等);

2018831日,第十三届全国人民代表大会常务委员会第五次会议《关于修改中华人民共和国个人所得税法的决定》,将个税免征额(起征点金额)由3500元提高到5000.下面两张表格分别是2012年和2018年的个人所得税税率表:

201211日实行:

级数

应纳税收入额(含税)

税率(

速算扣除数

不超过1500元的部分

3

0

超过1500元至4500元的部分

10

105

超过4500元至9000元的部分

20

555

超过9000元至35000元的部分

25

1005

超过35000元至55000元的部分

30

2755

超过55000元至80000元的部分

35

5505

超过80000元的部分

45

13505

2018101日试行:

级数

应纳税收入额(含税)

税率(

速算扣除数

不超过3000元的部分

3

0

超过3000元至12000元的部分

10

210

超过12000元至25000元的部分

20

1410

超过25000元至35000元的部分

25

2660

超过35000元至55000元的部分

30

4410

超过55000元至80000元的部分

35

7160

超过80000元的部分

45

15160

1)何老师每月工资收入均为13404元,专项扣除金额3710元,请问何老师10月份应缴纳多少元个人所得税?若与9月份相比,何老师增加收入多少元?

2)对于财务人员来说,他们计算个人所得税的方法如下:应纳个人所得税税额=应纳税收入额×适用税率-速算扣除数,请解释这种计算方法的依据?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点在以为焦点的双曲线上,过轴的垂线,垂足为,若四边形为菱形,则该双曲线的离心率为( )

A. B. 2 C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求下列各曲线的标准方程.

(1)长轴长为,离心率为,焦点在轴上的椭圆;

(2)已知双曲线的渐近线方程为,焦距为,求双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程](10分

在极坐标系中,圆C的极坐标方程为,若以极点O为原点,极轴为x轴的正半轴建立平面直角坐标系.

(1)求圆C的一个参数方程;

(2)在平面直角坐标系中,是圆C上的动点,试求的最大值,并求出此时点P的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图半圆的直径为4,为直径延长线上一点,且为半圆周上任一点,以为边作等边按顺时针方向排列)

(1)若等边边长为,试写出关于的函数关系;

(2)问为多少时,四边形的面积最大?这个最大面积为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:①对于独立性检验,的值越大,说明两事件相关程度越大,②以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则的值分别是,③某中学有高一学生400人,高二学生300人,高三学生200人,学校团委欲用分层抽样的方法抽取18名学生进行问卷调查,则高一学生被抽到的概率最大,④通过回归直线= +及回归系数,可以精确反映变量的取值和变化趋势,其中正确的个数是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的角所对的边份别为,且

1求角的大小;

2,求的周长的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)是否存在实数,使得函数的极值大于?若存在,求的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案