精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=x2+ax-lnx在[1,2]上是减函数,则实数a的取值范围是(  )
A.(-∞,-1]B.$(-∞,-\frac{7}{2}]$C.$[-\frac{7}{2},-1)$D.$[-\frac{7}{2},+∞)$

分析 根据题意,已知f(x)在区间[2,+∞)上是减函数,即f′(x)=2x+a-$\frac{1}{x}$≤0在区间[2,+∞)上恒成立,对于恒成立往往是把字母变量放在一边即参变量分离,另一边转化为求函数在定义域下的最值,即可求解.

解答 解:f′(x)=2x+a-$\frac{1}{x}$,
∵函数f(x)在[1,2]上是减函数,
∴当x∈[1,2]时,f′(x)=2x+a-$\frac{1}{x}$≤0恒成立,即a≤-2x+$\frac{1}{x}$恒成立.
由于y=-2x+$\frac{1}{x}$在[1,2]上为减函数,
则ymin=-$\frac{7}{2}$,则a≤ymin=-$\frac{7}{2}$,
故选:B.

点评 本题主要考查了根据函数单调性求参数范围的问题,解题的关键将题目转化成f′(x)≤0在区间[1,2]上恒成立进行求解,同时考查了参数分离法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知关于x的方程${log_2}({x+3})-{log_4}{x^2}=a$的解在区间(3,8)内,则a的取值范围是$(lo{g}_{2}\frac{11}{8},1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知x∈R且x≠1,比较两式1+x与$\frac{1}{1-x}$的值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.国际上通常用恩格尔系数衡量一个国家和地区人民生活水平的状况,它的计算公式为$n=\frac{x}{y}$(x代表人均食品支出总额,y代表人均个人消费支出总额)且y=2x+475,各种类型的家庭标准如表:
家庭类型贫困温饱小康富裕
nn≥59%50%≤n≤59%40%≤n≤50%30%≤n≤40%
张先生居住区2007年比2002年食品支出下降7.5%,张先生家在2007年购买食品和2002年完全相同的情况下人均少支出75元.则张先生家2007年属于(  )
A.贫困B.温饱C.小康D.富裕

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.以A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形的形状为等腰直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=ax-lnx,a∈R
(1)若f(x)在x=1处有极值,求f(x)的单调递增区间;
(2)是否存在正实数a,使f(x)在区间(0,e]的最小值是3,若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.点M的极坐标(1,π)化成直角坐标为(  )
A.(1,0)B.(-1,0)C.(0,1)D.(0,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.不等式$\frac{x-1}{{x}^{2}-4}$>0的解集为(  )
A.{x|-2<x<1}B.{x|-2<x<1或x>2}C.{x|x>2}D.{x|1<x<2或x<-2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|≤π),在一个周期内的图象如图.
(1)求函数f(x)的解析式;
(2)若g(x)的图象是将f(x)的图象向右平移$\frac{π}{24}$个单位得到的,求g(x)的解析式;
(3)若h(x)=$\frac{\sqrt{2}}{4}$a•g(x)+$\frac{a}{2}$+b,当x∈[0,$\frac{π}{2}$]时,h(x)的值域是[3,4],求实数a,b的值.

查看答案和解析>>

同步练习册答案