精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列的前项和为,数列是等比数列,且满足 .

(1)求数列的通项公式;

(2)数列的前项和为,若对一切正整数都成立,求的最小值.

【答案】(1),;(2).

【解析】试题分析:1根据 列出关于公比 公差的方程组,解方程组可得的值,从而可得数列的通项公式;(2)由(1)可得利用错位相减法,根据等比数列的求和公式法求和后,考虑的取值范围可得的最小值.

试题解析:(1)由已知可得解得dq=2,所以an=2n+1,bn=2n-1

(2)由由此可得

以上两式两边错位相减可得

故当n→+∞时,,此时Tn→10,所以M的最小值为10.

【易错点晴】本题主要考查等差数列与等比数列基本量运算,以及“错位相减法”求数列的和,以及不等式恒成立问题,属于难题. “错位相减法”求数列的和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:①掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列的积);②相减时注意最后一项 的符号;③求和时注意项数别出错;④最后结果一定不能忘记等式两边同时除以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】正△ABC的边长为2, CDAB边上的高,EF分别是ACBC的中点(如图(1)).现将△ABC沿CD翻成直二面角ADCB(如图(2)).在图(2)中:

(1)求证:AB∥平面DEF

(2)在线段BC上是否存在一点P,使APDE?证明你的结论;

(3)求二面角EDFC的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校进行文科、理科数学成绩对比,某次考试后,各随机抽取100名同学的数学考试成绩进行统计,其频率分布表如下.

(Ⅰ)根据数学成绩的频率分布表,求理科数学成绩的中位数的估计值;(精确到0.01)

(Ⅱ)请填写下面的列联表,并根据列联表判断是否有90%的把握认为数学成绩与文理科有关:

参考公式与临界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在平行四边形中,,以为折痕将△折起,使点到达点的位置,且

1)证明:平面平面

2为线段上一点,为线段上一点,且,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用“五点法”画函数fx)=Asinωx+φ)(ω0|φ|)在某一个周期内的图象时,列表并填入了部分数据,如表:

ωx+φ

0

π

2π

x

Asinωx+φ

0

5

5

0

1)请将上表数据补充完整,并直接写出函数fx)的解析式;

2)将yfx)图象上所有点向左平移θθ0)个单位长度,得到ygx)的图象.ygx)图象的一个对称中心为(0),求θ的最小值.

3)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是定义在上的函数,若存在,使得单调递增,在上单调递减,则称上的单峰函数,为峰点,包含峰点的区间称为含峰区间,其含峰区间的长度为:

(1)判断下列函数中,哪些是“上的单峰函数”?若是,指出峰点;若不是,说出原因;

(2)若函数上的单峰函数,求实数的取值范围;

(3)若函数是区间上的单峰函数,证明:对于任意的,若,则为含峰区间;若,则为含峰区间;试问当满足何种条件时,所确定的含峰区间的长度不大于0.6.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是正方体的平面展开图,在这个正方体中,正确的命题是( )

A. BD与CF成60°角 B. BD与EF成60°角 C. AB与CD成60°角 D. AB与EF成60°角

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )

A. 1盏 B. 3盏 C. 5盏 D. 9盏

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆)的左、右焦点,过轴的垂线与交于

两点, 轴交于点 ,且 为坐标原点.

(1)求的方程;

(2)设为椭圆上任一异于顶点的点, 的上、下顶点,直线分别交轴于点.若直线与过点的圆切于点.试问: 是否为定值?若是,求出该定值;若不是,请说明理由。

查看答案和解析>>

同步练习册答案