精英家教网 > 高中数学 > 题目详情
2.求证:$\frac{π}{2}$是函数f(x)=|sinx|+|cosx|的一个周期.

分析 直接利用周期的定义证明即可.

解答 证明:函数f(x)=|sinx|+|cosx|,
f(x+$\frac{π}{2}$)=|sin(x+$\frac{π}{2}$)|+|cos(x+$\frac{π}{2}$)|=|cosx|+|sinx|=f(x).
所以$\frac{π}{2}$是函数f(x)=|sinx|+|cosx|的一个周期.

点评 本题考查函数的周期的判断与证明,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知F是抛物线y2=4x的焦点,点A,B在该抛物线上且位于x轴的两侧,OA⊥OB(其中O为坐标原点),则△AOB与△AOF面积之和的最小值是(  )
A.16B.8$\sqrt{3}$C.8$\sqrt{5}$D.18

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.α.β为锐角,且sinα=$\frac{4}{7}\sqrt{3}$,tan(α+β)=-$\frac{5}{11}\sqrt{3}$.则β=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若tan(α+$\frac{π}{4}$)=3+2$\sqrt{2}$,则$\frac{1-cos2α}{sin2α}$=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数f(x)满足f(x+1)=x2-x+2,则f(-1)=(  )
A.8B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合P={x|6<x<8},Q={x|x∈N},则P∩Q等于(  )
A.{7}B.{6,7}C.{6,7,8}D.{x|6<x<8}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列说法中正确的是(  )
A.向量$\overrightarrow{a}$与非零向量$\overrightarrow{b}$共线,$\overrightarrow{b}$与$\overrightarrow{c}$共线,则$\overrightarrow{a}$与$\overrightarrow{c}$共线
B.任意两个相等向量不一定是共线向量
C.任意两个共线向量相等
D.若向量$\overrightarrow{a}$与$\overrightarrow{b}$共线,则$\overrightarrow{a}$=λ$\overrightarrow{b}$(λ>0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=$\frac{\sqrt{x+2}}{x}$的定义域为[-2,0)∪(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.椭圆$\frac{x^2}{5}+\frac{y^2}{3}=1$的离心率是(  )
A.$\frac{2}{5}$B.$\frac{{\sqrt{10}}}{5}$C.$\frac{2}{3}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

同步练习册答案