精英家教网 > 高中数学 > 题目详情

在直角坐标系中,曲线C1的参数方程为:为参数),以原点为极点,x轴的正半轴为极轴,并取与直角坐标系相同的长度单位,建立极坐标系,曲线C2是极坐标方程为:
(1)求曲线C2的直角坐标方程;
(2)若P,Q分别是曲线C1和C2上的任意一点,求的最小值.

(1) ;(2)

解析
试题分析:(1)把代入曲线C2是极坐标方程中,即可得到曲线C2的直角坐标方程;
(2)由已知可知P),,由两点间的距离公式求出的表达式,再根据二次函数的性质,求出的最小值,然后可得min-.
试题解析: (1),       2分

.         4分
(2)设P),
       6分
时,,       8分
.        10分
考点:1.极坐标方程和直角坐标方程的互化;2.曲线与曲线间的位置关系以及二次函数的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知直线的极坐标方程为,圆M的参数方程为。求:(1)将直线的极坐标方程化为直角坐标方程;
(2)求圆M上的点到直线的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

化极坐标方程ρ2cosθ-ρ=0为直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立坐标系.已知点A的极坐标为,直线的极坐标方程为ρcos=a,且点A在直线上.
(1)求a的值及直线的直角坐标方程;
(2)圆C的参数方程为,(α为参数),试判断直线与圆的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,设动点PQ都在曲线Cθ为参数)上,且这两点对应的参数分别为θαθ=2α(0<α<2π),设PQ的中点M与定点A(1,0)间的距离为d,求d的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为
(1)求圆的直角坐标方程;
(2)若是直线与圆面的公共点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在极坐标系下,已知圆O:ρ=cosθ+sinθ和直线l:ρsin(θ-)=.
(1)求圆O和直线l的直角坐标方程.
(2)当θ∈(0,π)时,求直线l与圆O公共点的一个极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线C的极坐标方程为,直线的参数方程为( t为参数,0≤).
(Ⅰ)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;
(Ⅱ)若直线经过点(1,0),求直线被曲线C截得的线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

以直角坐标系的原点为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位.已知直线l的极坐标方程为ρsin(θ-)=6,圆C的参数方程为(θ为参数),求直线l被圆C截得的弦长.

查看答案和解析>>

同步练习册答案