精英家教网 > 高中数学 > 题目详情
精英家教网如图,在半径为
3
、圆心角为60°的扇形的弧上任取一点P,作扇形的内接矩形PNMQ,使点Q在OA上,点(N,M)在OB上,设矩形PNMQ的面积为y,
(1)按下列要求写出函数的关系式:
 ①设PN=x,将y表示成x的函数关系式;
 ②设∠POB=θ,将y表示成θ的函数关系式;
(2)请你选用(1)中的一个函数关系式,求出y的最大值.
分析:( 1)①通过求出矩形的边长,求出面积的表达式;
     ②利用三角函数的关系,求出矩形的邻边,求出面积的表达式;
(2)利用(1)②的表达式,化为一个角的一个三角函数的形式,根据θ的范围确定矩形面积的最大值.
解答:解:(1)①因为ON=
3-x2
,OM=
3
3
x
,所以MN=
3-x2
-
3
3
x
,(2分)
所以y=x(
3-x2
-
3
3
x
)   x∈(0,
3
2
).(4分)
②因为PN=
3
sinθ,ON=
3
cosθ
,OM=
3
3
×
3
sinθ =sinθ

所以MN=ON-OM=
3
cosθ-sinθ
(6分)
所以y=
3
sinθ(
3
cosθ-sinθ)

即y=3sinθcosθ-
3
sin2θ,θ∈(0,
π
3
)(8分)
(2)选择y=3sinθcosθ-
3
sin2θ=
3
sin(2θ+
π
6
)-
3
2
,(12分)
∵θ∈(0,
π
3
)∴2θ+
π
6
∈(
π
6
6
)
(13分)
所以ymax=
3
2
.(14分)
点评:本题是中档题,考查函数解析式的求法,三角函数的最值的确定,三角函数公式的灵活运应,考查计算能力,课本题目的延伸.如果选择①需要应用导数求解,麻烦,不是命题者的本意.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在半径为R、圆心角为
π3
的扇形金属材料中剪出一个长方形EPQF,并且EP与∠AOB的平分线OC平行,设∠POC=θ.
(1)试写出用θ表示长方形EPQF的面积S(θ)的函数.
(2)现用EP和FQ作为母线并焊接起来,将长方形EFPQ制成圆柱的侧面,能否从△OEF中直接剪出一个圆面作为圆柱形容器的底面?如果不能请说明理由.如果可能,求出侧面积最大时容器的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在半径为R、圆心角为
π3
的扇形金属材料中剪出一个长方形EPQF,并且EP与∠AOB的平分线OC平行,设∠POC=θ.
(1)试写出用θ表示长方形EPQF的面积S(θ)的函数;
(2)在余下的边角料中在剪出两个圆(如图所示),试问当矩形EPQF的面积最大时,能否由这个矩形和两个圆组成一个有上下底面的圆柱?如果可能,求出此时圆柱的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•成都二模)如图,在半径为l的球O中.AB、CD是两条互相垂直的直径,半径OP⊥平面ABCD.点E、F分别为大圆上的劣弧
BP
AC
的中点,给出下列结论:
①向量
OE
在向量
OB
方向上的投影恰为
1
2

②E、F两点的球面距离为
3

③球面上到E、F两点等距离的点的轨迹是两个点;
④若点M为大圆上的劣弧
AD
的中点,则过点M且与直线EF、PC成等角的直线只有三条,其中正确的是(  )

查看答案和解析>>

科目:高中数学 来源:2014届辽宁省庄河市高一上学期期末考试文科数学试卷 题型:选择题

如图,在半径为3的球面上有三点,,球心到平面距离是,则两点的球面距离(经过这两点的大圆在这两点间的劣弧的长度)是

A.                     B.

C.                    D.2

 

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:

解答下列各题:

(1)求半径为2,圆心角为的圆弧的长度.

(2)在半径为6的圆中,求长度为6的弦和它所对的劣弧围成的弓形面积.

(3)如图(1),在半径为10,圆心角为的扇形铁皮ADE上,截去一个半径为4的小扇形ABC,求留下部分环形的面积.

查看答案和解析>>

同步练习册答案