精英家教网 > 高中数学 > 题目详情

【题目】某城市理论预测2010年到2014年人口总数与年份的关系如下表所示

年份2010+x(年)

0

1

2

3

4

人口数y(十万)

5

7

8

11

19

(1)请根据上表提供的数据,求出y关于x的线性回归方程;

(2) 据此估计2015年该城市人口总数。

【答案】1;(2196.

【解析】试题分析:(1)先求出五对数据的平均数,求出年份和人口数的平均数,得到样本中心点,把所给的数据代入公式,利用最小二乘法求出线性回归方程的系数,再求出a的值,从而得到线性回归方程;

2)把x=5代入线性回归方程,得到,即2015年该城市人口数大约为19.6(十万).

试题解析:

解:1

= 0×5+1×7+2×8+3×11+4×19=132

=

y关于x的线性回归方程为

2)当x=5时,,即

据此估计2015年该城市人口总数约为196.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.

(1)求A∪B,(CUA)∩B;

(2)若A∩C≠,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A=[0, ),B=[ ,1],函数f (x)= ,若x0∈A,且f[f (x0)]∈A,则x0的取值范围是(
A.(0, ]
B.[ ]
C.(
D.[0, ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1 , F2分别是椭圆C: (a>b>0)的两个焦点,P(1, )是椭圆上一点,且 |PF1|,|F1F2|, |PF2|成等差数列.
(1)求椭圆C的标准方程;
(2)已知动直线l过点F2 , 且与椭圆C交于A,B两点,试问x轴上是否存在定点Q,使得 =﹣ 恒成立?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知AB是⊙O的直径,点D是⊙O上一点,过点D作⊙O的切线,交AB的延长线于点C,过点C作AC的垂线,交AD的延长线于点E.

(1)求证:△CDE为等腰三角形;
(2)若AD=2, = ,求⊙O的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上的偶函数.

(1)求实数的值;

(2)判断并证明函数上单调性;

(3)求函数上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为 (t为参数),以原点O为极点,x轴的非负半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2 sinθ.
(1)求圆C的直角做标方程;
(2)圆C的圆心为C,点P为直线l上的动点,求|PC|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知AB为圆O的直径,点D为线段AB上一点,且AD= DB,点C为圆O上一点,且BC= AC.点P在圆O所在平面上的正投影为点D,PD=DB.

(1)求证:PA⊥CD;
(2)求二面角C﹣PB﹣A的余弦值.

查看答案和解析>>

同步练习册答案