精英家教网 > 高中数学 > 题目详情
已知f(x)=lg
1-x
1+x
,且f(x)+f(y)=f(z),则z=
 
考点:对数的运算性质
专题:函数的性质及应用
分析:由条件求得f(x)+f(y)=lg
1-
x+y
1+xy
1-
x+y
1+xy
=f(z)=lg
1-z
1+z
,从而求得z的值.
解答: 解:∵f(x)=lg
1-x
1+x
,∴f(x)+f(y)=lg
1-x
1+x
+lg
1-y
1+y
=lg
1-x-y+xy
1+x+y+xy
=lg
1+xy-(x+y)
1+xy+(x+y)
=lg
1-
x+y
1+xy
1-
x+y
1+xy
=f(z)=lg
1-z
1+z

∴z=
x+y
1+xy

故答案为:
x+y
1+xy
点评:本题主要考查对数的运算性质的应用,式子的变形是解题的关键,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知全集U=A∪B={x∈N*|0≤x≤10},A={1,3,5,7,9},A∩∁UB={1,3,5,7},则集合B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=
1
3
x3-x2
+1(0<x<2)的图象上任意点处切线的倾斜角为α,则α的最小值是(  )
A、
π
6
B、
4
C、
π
4
D、
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,A={x|f(x)=
1
x2-x-2
}
,B={x|log2(x-a)<1}.
(1)若a=1,求(∁UA)∩B.
(2)若(∁UA)∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,则有(  )
A、cosA>sinB且cosB>sinA
B、cosA<sinB且cosB<sinA
C、cosA>sinB且cosB<sinA
D、cosA<sinB且cosB>sinA

查看答案和解析>>

科目:高中数学 来源: 题型:

图①是一个边长为(m+n)的正方形,小明将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是(  )
A、(m+n)2-(m-n)2=4mn
B、(m+n)2-(m2+n2)=2mn
C、(m-n)2+2mn=m2+n2
D、(m+n)(m-n)=m2-n2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=
1
2
AB=1.
(Ⅰ)证明:面PAD⊥面PCD;
(Ⅱ)求AC与PB所成的角的余弦值;
(Ⅲ)求线BP与面PAC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α为锐角,且tanα=
2
-1,函数f(x)=2xtan2α+sin(2α+
π
4
),数列{an}的首项a1=1,an+1=f(an).
(1)求函数f(x)的表达式;
(2)若数列{bn}满足b1=a1,bn=log2(an+1),设Tn=
1
b1+n
+
1
b2+n
+…+
1
bn+n
,若Tn>m对n≥2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在长方体ABCD-A1B1C1D1中,BB1=BC.
(1)求证:平面DA1C1∥平面B1AC;
(2)求证:B1C⊥BD1

查看答案和解析>>

同步练习册答案