精英家教网 > 高中数学 > 题目详情

【题目】已知是双曲线的左、右焦点,点P上异于顶点的点,直线l分别与以为直径的圆相切于AB两点,若向量的夹角为,则=___________.

【答案】

【解析】

首先将图象画出来,设以PF1PF2为直径的圆的圆心分别为CD,连接ACBD,过DDEAC于点E,连接CD,易证四边形ABDE是矩形,根据几何关系可得|CE|===5,由可得,又向量的夹角即为的夹角,从而.

如图,设以PF1PF2为直径的圆的圆心分别为CD,连接ACBD

DDEAC于点E,连接CD,则

因为直线AB是圆C和圆D的公切线,且切点分别是AB

所以ACABBDAB,则四边形ABDE是矩形,所以|AB|=|DE||AE|=|BD|.

,易知|CE|=|AC|-|AE|=|AC|-|BD|=

根据双曲线的定义知,|PF1|-|PF2|=10,所以|CE|=5.

因为,由|可得

|AB|=3,因为向量的夹角即为的夹角,

所以.

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为上一点.

(1)求椭圆的方程;

(2)设分别关于两坐标轴及坐标原点的对称点,平行于的直线于异于的两点.点关于原点的对称点为.证明:直线轴围成的三角形是等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,长方体的底面为正方形,是棱的中点,平面与直线相交于点

1)证明:直线平面

2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=Acosωx)(A0ω00φπ)的图象的一个最高点为(),与之相邻的一个对称中心为,将fx)的图象向右平移个单位长度得到函数gx)的图象,则(

A.gx)为偶函数

B.gx)的一个单调递增区间为

C.gx)为奇函数

D.函数gx)在上有两个零点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,,侧面为等边三角形.

(Ⅰ)证明:

(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为提高产品质量,某企业质量管理部门经常不定期地对产品进行抽查检测,现对某条生产线上随机抽取的100个产品进行相关数据的对比,并对每个产品进行综合评分(满分100分),将每个产品所得的综合评分制成如图所示的频率分布直方图.记综合评分为80分及以上的产品为一等品.

1)求图中的值,并求综合评分的中位数;

2)用样本估计总体,视频率作为概率,在该条生产线中随机抽取3个产品,求所抽取的产品中一等品数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】南北朝时代的伟大科学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:幂势既同,则积不容异.其含义是:夹在两个平行平面之间的两个几何体,被平行于这两个平行平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等,如图,夹在两个平行平面之间的两个几何体的体积分别为,被平行于这两个平面的任意平面截得的两个截面面积分别为,则不总相等不相等的(

A.充分而不必要条件B.必要而不充分条件

C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线C)的焦点为

1)动直线lF点且与抛物线C交于MN两点,点My轴的左侧,过点M作抛物线C准线的垂线,垂足为M1,点E上,且满足连接并延长交y轴于点D的面积为,求抛物线C的方程及D点的纵坐标;

2)点H为抛物线C准线上任一点,过H作抛物线C的两条切线,,切点为AB,证明直线过定点,并求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求的单调区间;

2)当时,记函数,若函数至少有三个零点,求实数的取值范围

查看答案和解析>>

同步练习册答案