精英家教网 > 高中数学 > 题目详情

【题目】已知三棱柱ABC﹣A1B1C1的侧棱垂直于底面,且其6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为

【答案】
【解析】解:因为三棱柱ABC﹣A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,
所以三棱柱的底面是直角三角形,侧棱与底面垂直,侧面B1BCC1 , 经过球的球心,球的直径是其对角线的长,
因为AB=3,AC=4,BC=5,BC1= =13.
所以球的半径为:
所以答案是:

【考点精析】根据题目的已知条件,利用球内接多面体的相关知识可以得到问题的答案,需要掌握球的内接正方体的对角线等于球直径;长方体的外接球的直径是长方体的体对角线长.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设 .若f(x)=x2+px+q的图象经过两点(α,0),(β,0),且存在整数n,使得n<α<β<n+1成立,则( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 的焦点为,圆 .直线与抛物线交于点两点,与圆切于点.

(1)当切点的坐标为时,求直线及圆的方程;

(2)当时,证明: 是定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(ω>0,0<φ< )的部分图象如图.

(1)求f(x)的解析式;
(2)将函数y=f(x)的图象上所有点的纵坐标不变,横坐标缩短为原来的 倍,再将所得函数图象向右平移 个单位,得到函数y=g(x)的图象,求g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市上年度电价为0.80元/千瓦时,年用电量为a千瓦时.本年度计划将电价降到0.55元/千瓦时~0.75元/千瓦时之间,而居民用户期望电价为0.40元/千瓦时(该市电力成本价为0.30元/千瓦时)经测算,下调电价后,该城市新增用电量与实际电价和用户期望电价之差成反比,比例系数为0.2a.试问当地电价最低为多少时,可保证电力部门的收益比上年度至少增加20%.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是圆O的直径,PA⊥圆O所在的平面,C是圆O上的点.

(1)求证:BC⊥平面PAC;
(2)若Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网站针对2014年中国好声音歌手A,B,C三人进行网上投票,结果如下:

观众年龄

支持A

支持B

支持C

20岁以下

200

400

800

20岁以上(含20岁)

100

100

400

(1)在所有参与该活动的人中,用分层抽样的方法抽取n人,其中有6人支持A,求n的值.
(2)在支持C的人中,用分层抽样的方法抽取6人作为一个总体,从这6人中任意选取2人,求恰有1人在20岁以下的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知α,β为锐角, =cos(α+β).
(1)求tan(α+β)cotα的值;
(2)求tanβ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A、B、C的对边分别是a、b、c,且b2+c2﹣a2=bc.
(1)求A;
(2)若a= ,sinBsinC=sin2A,求△ABC的周长.

查看答案和解析>>

同步练习册答案