精英家教网 > 高中数学 > 题目详情

【题目】在数列中, ,其前项和为,满足,其中.

1)设,证明:数列是等差数列;

2)设为数列的前项和,求

3)设数列的通项公式为为非零整数),试确定的值,使得对任意,都有数列为递增数列.

【答案】1证明见解析;2;3

【解析】试题分析:当数列提供之间的递推关系时,证明某数列是等差数列,就是证明第n+1项与第n项的比是一个常数,这个分析给证明提供一个暗示,有了证明的目标,第一步n=1 时,求出首项,第二步,当时利用两式相减,得出的关系,达到证明的目的利用错位相减法求和,要注意运算的准确,借助数列是递增数列,根据不等式恒成立的要求,利用“极值原理”求出参数的范围.

试题解析:

1)当时, ,所以

时,

所以,即,所以(常数)

,所以是首项为2,公差为1的对称数列,所以.

2

所以

相减得

所以.

3)若数列为递增数列,可得,得

化简得

进而对任意恒成立,

为奇数时, ,所以

为偶数时, ,所以

所以,又为非零整数,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是边长为的正方形, 底面 分别为的中点.

)求证: 平面

)若,试问在线段上是否存在点,使得二面角 的余弦值为?若存在,确定点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱中, ,侧面底面 的中点, .

(Ⅰ)求证:

(Ⅱ)求直线与平面所成线面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin2 +x)+ (sin2x﹣cos2x),x∈[ ].
(1)求 的值;
(2)求f(x)的单调区间;
(3)若不等式|f(x)﹣m|<2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】斐波那契数列满足: .若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前项所占的格子的面积之和为,每段螺旋线与其所在的正方形所围成的扇形面积为,则下列结论错误的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数y=f(x)是减函数,且对任意的a∈R,都有f(﹣a)+f(a)=0,若x、y满足不等式f(x2﹣2x)+f(2y﹣y2)≤0,则当1≤x≤4时,x﹣3y的最大值为(
A.10
B.8
C.6
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个包装箱内有6件产品,其中4件正品,2件次品。现随机抽出两件产品.(要求罗列出所有的基本事件)

(1)求恰好有一件次品的概率。

(2)求都是正品的概率。

(3)求抽到次品的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解关于x的不等式ax2﹣(a+2)x+2<0(a∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的右顶点为,左、右焦点分别为,过点

且斜率为的直线与轴交于点, 与椭圆交于另一个点,且点轴上的射影恰好为点

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过点且斜率大于的直线与椭圆交于两点(),若,求实数的取值范围.

查看答案和解析>>

同步练习册答案