精英家教网 > 高中数学 > 题目详情

【题目】某圆拱桥的示意图如图所示该圆拱的跨度AB36 m拱高OP6 m在建造时每隔3 m需用一个支柱支撑求支柱A2P2的长(精确到0.01 m)

【答案】1224 m

【解析】试题分析:建立坐标系,支柱A2P2的长问题转化求点P2的纵坐标,根据条件求出圆拱所在圆的方程,即可求解.

试题解析:

如图,以线段AB所在的直线为x轴,线段AB的中点O为坐标原点建立平面直角坐标系,那么点ABP的坐标分别为(18,0)(18,0)(0,6)

设圆拱所在的圆的方程是x2y2DxEyF0.

因为ABP在此圆上,故有

,解得.

故圆拱所在的圆的方程是x2y248y3240.

将点P2的横坐标x6代入上式,解得y=-2412.

答:支柱A2P2的长约为1224 m.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(Ⅰ)比较下列两组实数的大小: ① ﹣1与2﹣ ;②2﹣
(Ⅱ)类比以上结论,写出一个更具一般意义的结论,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E的右焦点与抛物线y2=4x的焦点重合,点M 在椭圆E上. (Ⅰ)求椭圆E的标准方程;
(Ⅱ)设P(﹣4,0),直线y=kx+1与椭圆E交于A,B两点,若∠APO=∠BPO,(其中O为坐标原点),
求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣ax+1(a∈R).
(1)若函数f(x)的图象在x=1处的切线l垂直于直线y=x,求实数a的值及直线l的方程;
(2)求函数f(x)的单调区间;
(3)若x>1,求证:lnx<x﹣1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于两条平行直线和圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”;否则称为“平行相交”.已知直线l1ax3y60l22x(a1)y60与圆Cx2y22xb21(b>0)的位置关系是“平行相交”,则实数b的取值范围为 (   )

A. ( ) B. (0 )

C. (0 ) D. ( )(,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:如果函数f(x)在[a,b]上存在x1 , x2(a<x1<x2<b)满足 ,则称函数f(x)是[a,b]上的“双中值函数”.已知函数f(x)=x3﹣x2+a是[0,a]上的“双中值函数”,则实数a的取值范围是(
A.
B.(
C.( ,1)
D.( ,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1所示的平面图形中,ABCD是边长为2的正方形,△HDA和△GDC都是以D为直角顶点的等腰直角三角形,点E是线段GC的中点.现将△HDA和△GDC分别沿着DA,DC翻折,直到点H和G重合为点P.连接PB,得如图2的四棱锥.
(Ⅰ)求证:PA∥平面EBD;
(Ⅱ)求二面角C﹣PB﹣D大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=xlnx,g(x)=﹣x2+ax﹣3.
(1)求函数f(x)在[t,t+2](t>0)上的最小值;
(2)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线l1经过点A(m,1),B(-3,4),直线l2经过点C(1,m),D(-1,m+1),当l1l2l1l2时,分别求实数m的值.

查看答案和解析>>

同步练习册答案