精英家教网 > 高中数学 > 题目详情

在直角坐标系中,已知中心在原点,离心率为的椭圆E的一个焦点为圆的圆心.
⑴求椭圆E的方程;
⑵设P是椭圆E上一点,过P作两条斜率之积为的直线,当直线都与圆相切时,求P点坐标.

(1);(2)

解析试题分析:(1)圆心坐标是已知的,故椭圆的焦点是已知的,从而半焦距已知了,又有离心率,故半长轴长也能求出,从而求出,而根据题意,椭圆方程是标准方程,可其方程易得;(2)设P点坐标为,再设一条切线的斜率为,则另一条切线的斜率为,三个未知数需要三个方程,点P在椭圆上,一个等式,两条直线都圆的切线,利用圆心到切线的距离等于圆的半径又得到两个等式,三个等量关系,三个未知数理论上可解了,当然具体解题时,可设切线斜率为,则点斜率式写出直线方程,利用圆心到切线距离等于圆半径得出关于的方程,而是这个方程的两解,由韦达定理得,这个结果又是,就列出了关于P点坐标的一个方程,再由P点在椭圆上,可解出P点坐标.
试题解析:(1)圆的标准方程为,圆心为,所以,又,而据题意椭圆的方程是标准方程,故其方程为.4分
(2)设,得
,依题意的距离为
整理得同理

是方程的两实根10分
12分
14分
16分
考点:(1)椭圆的标准方程;(2)圆的切线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知的两顶点坐标,圆的内切圆,在边上的切点分别为(从圆外一点到圆的两条切线段长相等),动点的轨迹为曲线.

(1)求曲线的方程;
(2)设直线与曲线的另一交点为,当点在以线段为直径的圆上时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的投影,M为PD上一点,且|MD|=|PD|,当P在圆上运动时,求点M的轨迹C的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的中心在原点,焦点在轴上,焦距为2,离心率为
(1)求椭圆C的方程;
(2)设直线经过点(0,1),且与椭圆C交于两点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直线y=kx+b与椭圆交于A、B两点,记△AOB的面积为S.

(1)求在k=0,0<b<1的条件下,S的最大值;
(2)当|AB|=2,S=1时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切,过点P(4,0)且不垂直于x轴直线与椭圆C相交于A、B两点.
(1)求椭圆C的方程;
(2)求的取值范围;
(3)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于.
(1)求动点P的轨迹方程;
(2)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为
(Ⅰ)求椭圆的方程;
(Ⅱ)已知动直线与椭圆相交于两点. ①若线段中点的横坐标为,求斜率的值;②若点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设双曲线以椭圆的两个焦点为焦点,且双曲线的一条渐近线是
(1)求双曲线的方程;
(2)若直线与双曲线交于不同两点,且都在以为圆心的圆上,求实数的取值范围.

查看答案和解析>>

同步练习册答案