精英家教网 > 高中数学 > 题目详情

【题目】对于定义域为D的函数y=fx,如果存在区间[m,n]D,同时满足:

①fx[m,n]内是单调函数;

②当定义域是[m,n]时,fx的值域也是[m,n].则称[m,n]是该函数的“和谐区间”.

1证明:[0,1]是函数y=fx=x2的一个“和谐区间”.

2求证:函数不存在“和谐区间”.

3已知:函数aR,a0有“和谐区间”[m,n],当a变化时,求出n﹣m的最大值.

【答案】1证明见解析;2证明见解析;3

【解析】

试题分析:1根据二次函数的性质,在区间上单调递增,且值域也为满足“和谐区间”的定义,即可得到结论2该问题是一个确定性问题,从正面证明有一定的难度,故可采用反证法来进行证明3是已知函数定义域的子集,我们可以用表示出的取值,转化为二次函数的最值问题后,根据二次函数的性质,可以得到答案.

试题解析:1y=x2在区间[0,1]上单调递增.

又f0=0,f1=1,

值域为[0,1]

区间[0,1]是y=fx=x2的一个“和谐区间”.

2[m,n]是已知函数定义域的子集.

故函数[m,n]上单调递增.

[m,n]是已知函数的“和谐区间”,则

故m、n是方程的同号的相异实数根.

x2﹣3x+5=0无实数根,

函数不存在“和谐区间”.

3[m,n]是已知函数定义域的子集.

x0,

故函数[m,n]上单调递增.

[m,n]是已知函数的“和谐区间”,则

故m、n是方程,即的同号的相异实数根.

m,n同号,只须,即a1或a﹣3时,

已知函数有“和谐区间”[m,n]

当a=3时,n﹣m取最大值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为矩形,⊥平面的中点.

(Ⅰ)证明:∥平面

(Ⅱ)设二面角为60°,=1,=,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设平面平面

(1)证明: 平面

(2) 求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆为平面内一动点,若以线段为直径的圆与圆相切.

(1)证明为定值,并写出点的轨迹方程;

(2)设点的轨迹为曲线,直线两点,过且与垂直的直线与交于两点,求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线过点,其参数方程为为参数).以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)若曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列推理不属于合情推理的是( )

A. 由铜、铁、铝、金、银等金属能导电,得出一切金属都能导电.

B. 半径为的圆面积,则单位圆面积为.

C. 由平面三角形的性质推测空间三棱锥的性质.

D. 猜想数列2,4,8,…的通项公式为. .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果存在函数为常数),使得对函数定义域内任意都有成立,那么称为函数的一个“线性覆盖函数”.给出如下四个结论:

①函数存在“线性覆盖函数”;

②对于给定的函数,其“线性覆盖函数”可能不存在,也可能有无数个;

为函数的一个“线性覆盖函数”;

④若为函数的一个“线性覆盖函数”,则

其中所有正确结论的序号是___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且).

(Ⅰ)求函数的单调区间;

(Ⅱ)求函数上的最大值.

【答案】(Ⅰ)的单调增区间为,单调减区间为.(Ⅱ)当时, ;当时, .

【解析】试题分析】(I)利用的二阶导数来研究求得函数的单调区间.(II) 由(Ⅰ)得上单调递减,在上单调递增,由此可知.利用导数和对分类讨论求得函数在不同取值时的最大值.

试题解析】

(Ⅰ)

,则.

,∴上单调递增,

从而得上单调递增,又∵

∴当时, ,当时,

因此, 的单调增区间为,单调减区间为.

(Ⅱ)由(Ⅰ)得上单调递减,在上单调递增,

由此可知.

.

.

∵当时, ,∴上单调递增.

又∵,∴当时, ;当时, .

①当时, ,即,这时,

②当时, ,即,这时, .

综上, 上的最大值为:当时,

时, .

[点睛]本小题主要考查函数的单调性,考查利用导数求最大值. 与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图像,讨论其图象与轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题.

型】解答
束】
22

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,圆的普通方程为. 在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为 .

(Ⅰ) 写出圆 的参数方程和直线的直角坐标方程;

( Ⅱ ) 设直线轴和轴的交点分别为为圆上的任意一点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数f(x)=,其中2<m<2,m∈Z,满足:

(1)f(x)是区间(0,+∞)上的增函数;

(2)对任意的x∈R,都有f(x) +f(x)=0.

求同时满足条件(1)、(2)的幂函数f(x)的解析式,并求x∈[0,3]时,f(x)的值域.

查看答案和解析>>

同步练习册答案