已知向量,设函数.
(1)求函数在上的单调递增区间;
(2)在中,,,分别是角,,的对边,为锐角,若,,的面积为,求边的长.
科目:高中数学 来源: 题型:解答题
若向量m=(sinωx,0),n=(cosωx,-sinωx)(ω>0),在函数f(x)=
m·(m+n)+t的图象中,对称中心到对称轴的最小距离为,且当x∈[0,]时,f(x)的最大值为1.
(1)求函数f(x)的解析式.
(2)求函数f(x)的单调递增区间.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数f(x)=sin x+sin.
(1)求f(x)的最小值,并求使f(x)取得最小值的x的集合;
(2)不画图,说明函数y=f(x)的图像可由y=sin x的图像经过怎样的变化得到.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数()的最小正周期为.
(1)求函数的单调增区间;
(2)将函数的图象向左平移个单位,再向上平移个单位,得到函数的图象.若在上至少含有个零点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数的图象的一个最高点为与之相邻的与轴的一个交点为
(1)求函数的解析式;
(2)求函数的单调减区间和函数图象的对称轴方程;
(3)用“五点法”作出函数在长度为一个周期区间上的图象.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com