【题目】已知点P在抛物线y2=x上,点Q在圆(x+ )2+(y﹣4)2=1上,则|PQ|的最小值为( )
A.
B.
C.
D.
【答案】A
【解析】解:∵点P在抛物线y2=x上,设P(t2,t),
∵圆(x+ )2+(y﹣4)2=1的圆心C(﹣ ,4),半径r=1,
∴|PC|2=(t2+ )2+(t﹣4)2,
=t4+2t2﹣8t+ ,
设f(t)=t4+2t2﹣8t+ ,f′(t)=4t3+4t﹣8,f″(t)=12t2+4>0恒成立,
∴f′(t)在R上单调递增,当f′(t)=0,解得:t=1,
∴f(t)在(﹣∞,1)单调递减,在(1,+∞)单调递增,
∴当t=1时,取最小值,最小值为 ,
∴丨PC丨的最小值为 ,
则丨PQ丨的最小值为:丨PQ丨min=丨PC丨min﹣r= ﹣1,
∴|PQ|的最小值 ﹣1,
故选A.
科目:高中数学 来源: 题型:
【题目】第96届(春季)全国糖酒商品交易会于2017年3月23日至25日在四川举办.交易会开始前,展馆附近一家川菜特色餐厅为了研究参会人数与餐厅所需原材料数量的关系,查阅了最近5次交易会的参会人数x(万人)与餐厅所用原材料数量t(袋),得到如下数据:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
参会人数x(万人) | 11 | 9 | 8 | 10 | 12 |
原材料t(袋) | 28 | 23 | 20 | 25 | 29 |
(Ⅰ)请根据所给五组数据,求出t关于x的线性回归方程 ;
(Ⅱ)已知购买原材料的费用C(元)与数量t(袋)的关系为 投入使用的每袋原材料相应的销售收入为600元,多余的原材料只能无偿返还.若餐厅原材料现恰好用完,据悉本次交易会大约有14万人参加,根据(Ⅰ)中求出的线性回归方程,预测餐厅应购买多少袋原材料,才能获得最大利润,最大利润是多少?(注:利润L=销售收入﹣原材料费用).
(参考公式: = , )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=log2(|x+1|+|x﹣2|﹣m).
(1)当m=7时,求函数f(x)的定义域;
(2)若关于x的不等式f(x)≥2的解集是R,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin(2x﹣ )+2cos2x﹣1(x∈R).
(1)求f(x)的单调递增区间;
(2)在△ABC中,三内角A,B,C的对边分别为a,b,c,已知f(A)= ,b,a,c成等差数列,且 =9,求a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式1+ 中“…”即代表无数次重复,但原式却是个定值,它可以通过方程1+ =x求得x= .类比上述过程,则 =( )
A.3
B.
C.6
D.2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC﹣A1B1C1中,侧面ACC1A1⊥底面ABC,∠A1AC=60°,AC=2AA1=4,点D,E分别是AA1 , BC的中点.
(1)证明:DE∥平面A1B1C;
(2)若AB=2,∠BAC=60°,求直线DE与平面ABB1A1所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的函数f(x)满足条件f(x+4)=﹣f(x),且函数y=f(x+2)是偶函数,当x∈(0,2]时, ,当x∈[﹣2,0)时,f(x)的最小值为3,则a的值等于( )
A.e2
B.e
C.2
D.1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y2=﹣2px(p>0)的焦点F与双曲线x2﹣8y2=8的左焦点重合,点A在抛物线上,且|AF|=6,若P是抛物线准线上一动点,则|PO|+|PA|的最小值为( )
A.3
B.4
C.3
D.3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com