精英家教网 > 高中数学 > 题目详情
15.求证:在二次函数f(x)=ax2+bx+c中,若x1≠x2,则使“f($\frac{{x}_{1}+{x}_{2}}{2}$)<$\frac{f({x}_{1})+f({x}_{2})}{2}$成立”的充要条件是“a>0”

分析 利用作差法,结合充分条件和必要条件的定义进行证明即可.

解答 证明:$\frac{f({x}_{1})+f({x}_{2})}{2}$-f($\frac{{x}_{1}+{x}_{2}}{2}$)=$\frac{1}{2}$(ax12+bx1+c+ax22+bx2+c)-a($\frac{{x}_{1}+{x}_{2}}{2}$)2-b•($\frac{{x}_{1}+{x}_{2}}{2}$)-c
=$\frac{1}{2}$(ax12+bx1+ax22+bx2)-a($\frac{{x}_{1}+{x}_{2}}{2}$)2-b•($\frac{{x}_{1}+{x}_{2}}{2}$)
=$\frac{1}{2}$(ax12+ax22)-a($\frac{{x}_{1}+{x}_{2}}{2}$)2
=$\frac{1}{4}$(2ax12+2ax22-ax12-ax22-2ax1x2
=$\frac{1}{4}$(ax12+ax22-2ax1x2
=$\frac{1}{4}$a(x1-x22
∵x1≠x2,∴(x1-x22>0,
若f($\frac{{x}_{1}+{x}_{2}}{2}$)<$\frac{f({x}_{1})+f({x}_{2})}{2}$成立,则$\frac{f({x}_{1})+f({x}_{2})}{2}$-f($\frac{{x}_{1}+{x}_{2}}{2}$)>0,此时a>0,
反之,若a>0,则$\frac{f({x}_{1})+f({x}_{2})}{2}$-f($\frac{{x}_{1}+{x}_{2}}{2}$)>0,即f($\frac{{x}_{1}+{x}_{2}}{2}$)<$\frac{f({x}_{1})+f({x}_{2})}{2}$成立,
故使“f($\frac{{x}_{1}+{x}_{2}}{2}$)<$\frac{f({x}_{1})+f({x}_{2})}{2}$成立”的充要条件是“a>0”.

点评 本题主要考查充分条件和必要条件的证明,利用作差法,结合函数的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图是一个弓形APB湖面景点的平面示意图.其所在圆O的半径为$\sqrt{2}$(圆心O在弓形APB内),P点是AB弧的中点,C为圆周上靠近A的一点,D为圆周上靠近B的一点,且CD∥AB.现在准备从A经过C到D建造一条观光路线,其中A到C是圆弧AC,C到D是线段CD.设∠AOB=$\frac{π}{2}$,∠POD=α rad,观光路线总长为y km.
(1)求y关于α的函数的解析式,并指出该函数的定义域;
(2)求观光路线总长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.两球体积之和为12π,半径之和为3,则两球半径之差的绝对值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知ξ的分别列如下:
ξ1234
P$\frac{1}{4}$$\frac{1}{3}$$\frac{1}{6}$$\frac{1}{4}$
并且η=2ξ+3,则方差Dη=$\frac{139}{36}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.集合A={x|x=3n+1,n∈Z},B={x|x=3n+2,n∈Z},C={x|x=6n+3,n∈Z}
(1)若c∈C,是否存在a∈A,b∈B,使c=a+b成立?
(2)对于任意a∈A,b∈B,是否一定有(a+b)∈C?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若数列{an}的通项公式是an=(-1)n•$\frac{1}{2n+1}$,则a10=(  )
A.$\frac{1}{21}$B.-$\frac{1}{21}$C.$\frac{1}{20}$D.-$\frac{1}{20}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.观察下列恒等式(α为任意数且sinα≠0)
$\frac{sinα}{sinα}$=1
$\frac{sin2α}{sinα}$=2cosα
$\frac{sin3α}{sinα}$=2cos2α+1
$\frac{sin4α}{sinα}$=2cos3α+2cosα
$\frac{sin5α}{sinα}$=2cos4α+2cos2α+1
$\frac{sin6α}{sinα}$=2cos5α+2cos3α+2cosα

(1)请按规律写出横线中的式子;
(2)请归纳出一般的结论,并证明你的结论;
(3)求cos$\frac{2π}{7}$+cos$\frac{4π}{7}$+cos$\frac{6π}{7}$+cos$\frac{8π}{7}$+cos$\frac{10π}{7}$+cos$\frac{12π}{7}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知x∈R,y∈R,若2x+y-5=0,求$\sqrt{x^2+y^2}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数y=$\frac{1}{\sqrt{{x}^{2}-3x-10}}$的定义域为A,B={x||x-m|<6},且A∪B=R,则实数m的取值范围是(  )
A.-1<m<4B.-1<m<3C.1<m<4D.1<m<3

查看答案和解析>>

同步练习册答案