【题目】金刚石是碳原子的一种结构晶体,属于面心立方晶胞(晶胞是构成晶体的最基本的几何单元),即碳原子处在立方体的个顶点,个面的中心,此外在立方体的对角线的处也有个碳原子,如图所示(绿色球),碳原子都以共价键结合,原子排列的基本规律是每一个碳原子的周围都有个按照正四面体分布的碳原子.设金刚石晶胞的棱长为,则正四面体的棱长为__________;正四面体的外接球的体积是__________.
科目:高中数学 来源: 题型:
【题目】已知椭圆,将其左、右焦点和短轴的两个端点顺次连接得到一个面积为的正方形.
(1)求椭圆的方程;
(2)直线与椭圆交于、两点(均不在轴上),点,若直线、、的斜率成等比数列,且的面积为(为坐标原点),求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂生产某种电子产品,每件产品合格的概率均为,现工厂为提高产品声誉,要求在交付用户前每件产品都通过合格检验,已知该工厂的检验仪器一次最多可检验件该产品,且每件产品检验合格与否相互独立.若每件产品均检验一次,所需检验费用较多,该工厂提出以下检验方案:将产品每个()一组进行分组检验,如果某一组产品检验合格,则说明该组内产品均合格,若检验不合格,则说明该组内有不合格产品,再对该组内每一件产品单独进行检验,如此,每一组产品只需检验一次或次.设该工厂生产件该产品,记每件产品的平均检验次数为.
(1)的分布列及其期望;
(2)(i)试说明,当越大时,该方案越合理,即所需平均检验次数越少;
(ii)当时,求使该方案最合理时的值及件该产品的平均检验次数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是一位发烧病人的体温记录折线图,下列说法不正确的是( )
A.病人在5月13日12时的体温是
B.病人体温在5月14日0时到6时下降最快
C.从体温上看,这个病人的病情在逐渐好转
D.病人体温在5月15日18时开始逐渐稳定
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于函数有下述四个结论:
①函数的图象把圆的面积两等分
②是周期为的函数
③函数在区间上有3个零点
④函数在区间上单调递减
其中所有正确结论的编号是( )
A.①③④B.②④C.①④D.①③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在上任意一点处的切线为,若过右焦点的直线交椭圆于两点,已知在点处切线相交于.
(Ⅰ)求点的轨迹方程;
(Ⅱ)①若过点且与直线垂直的直线(斜率存在且不为零)交椭圆于两点,证明为定值.
②四边形的面积是否有最小值,若有请求出最小值;若没有请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.
(1)若厂家库房中(视为数量足够多)的每件产品合格的概率为 从中任意取出 3件进行检验,求至少有 件是合格品的概率;
(2)若厂家发给商家 件产品,其中有不合格,按合同规定 商家从这 件产品中任取件,都进行检验,只有 件都合格时才接收这批产品,否则拒收.求该商家可能检验出的不合格产品的件数ξ的分布列,并求该商家拒收这批产品的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,直线将矩形纸分为两个直角梯形和,将梯形沿边翻折,如图2,在翻折的过程中(平面和平面不重合),下面说法正确的是
图1 图2
A.存在某一位置,使得平面
B.存在某一位置,使得平面
C.在翻折的过程中,平面恒成立
D.在翻折的过程中,平面恒成立
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地为鼓励群众参与“全民读书活动”,增加参与读书的趣味性.主办方设计这样一个小游戏:参与者抛掷一枚质地均匀的骰子(正方体,六个面上分别标注1,2,3,4,5,6六个数字).若朝上的点数为偶数.则继续抛掷一次.若朝上的点数为奇数,则停止游戏,照这样的规则进行,最多允许抛掷3次.每位参与者只能参加一次游戏.
(1)求游戏结束时朝上点数之和为5的概率;
(2)参与者可以选择两种方案:方案一:游戏结束时,若朝上的点数之和为偶数,奖励3本不同的畅销书;若朝上的点数之和为奇数,奖励1本畅销书.方案二:游戏结束时,最后一次朝上的点数为偶数,奖励5本不同的畅销书,否则,无奖励.试分析哪一种方案能使游戏参与者获得更多畅销书奖励?并说明判断的理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com