精英家教网 > 高中数学 > 题目详情
6.若数列{an}满足:a1=2,an=$\frac{2(2n-1)}{n}$an-1,(n≥2).求证:
(1)an=${C}_{2n}^{n}$;
(2)an是偶数.

分析 (1)由a1=2,an=$\frac{2(2n-1)}{n}$an-1,(n≥2),可得$\frac{{a}_{n}}{{a}_{n-1}}=\frac{2(2n-1)}{n}$.可得an=$\frac{{a}_{n}}{{a}_{n-1}}•\frac{{a}_{n-1}}{{a}_{n-2}}$$•\frac{{a}_{n-2}}{{a}_{n-3}}$•…•$\frac{{a}_{3}}{{a}_{2}}•\frac{{a}_{2}}{{a}_{1}}$•a1即可证明.
(2)由(1)可得an=${∁}_{2n}^{n}$是一个整数,又an=$\frac{(2n)!}{n!n!}$=2n$•\frac{(2n-1)!}{n!n!}$,即可证明.

解答 证明:(1)∵a1=2,an=$\frac{2(2n-1)}{n}$an-1,(n≥2),可得$\frac{{a}_{n}}{{a}_{n-1}}=\frac{2(2n-1)}{n}$.
∴an=$\frac{{a}_{n}}{{a}_{n-1}}•\frac{{a}_{n-1}}{{a}_{n-2}}$$•\frac{{a}_{n-2}}{{a}_{n-3}}$•…•$\frac{{a}_{3}}{{a}_{2}}•\frac{{a}_{2}}{{a}_{1}}$•a1
=$\frac{2(2n-1)}{n}$•$\frac{2(2n-3)}{n-1}$•$\frac{2(2n-5)}{n-2}$•…•$\frac{2(2×3-1)}{3}$×$\frac{2×(2×2-1)}{2}$×2
=$\frac{2n(2n-1)}{n•n}$$•\frac{(2n-2)(2n-3)}{(n-1)(n-1)}$•…•$\frac{2×3×(2×3-1)}{3×3}$•$\frac{2×2×(2×2-1)}{2×2}$×2
=$\frac{(2n)!}{n!n!}$
=${∁}_{2n}^{n}$.
(2)由(1)可得an=${∁}_{2n}^{n}$是一个整数,
又an=$\frac{(2n)!}{n!n!}$=2n$•\frac{(2n-1)!}{n!n!}$,必定是偶数.

点评 本题考查了递推关系的应用、“累乘求积”、组合数的公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.在△ABC中,∠A=30°,a=3,b=3$\sqrt{2}$,∠B=45°或135°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(ex)=x,则f(1)+f(e)+f(e2)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\left\{\begin{array}{l}{(2-a)x-12,x≤7}\\{(a+2)^{x-6},x>7}\end{array}\right.$是R上的增函数.
(I)求实数a的取值范围;
(Ⅱ)若g(x)=-$\frac{1}{3}$x3+$\frac{1}{2}$x2+2ax(x∈[1,4])的最小值为-$\frac{16}{3}$.试比较f{(g(x))与f($\frac{10}{3}$)的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.画出求1!+2!+…+100!的程序框图,并写出程序(100!=1×2×…×100)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若直线x+2y+c=0,过点(2,-5),则该直线不经过第一象限.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x2+ax+b,且满足f(1)=f(2)=0,求f(-2)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.以直角坐标系的原点为极点,x轴的正半轴为极轴,并在两坐标系中取相同的长度.已知曲线C1的极坐标方程为ρ=2cosθ,将曲线C1向左平移一个单位,再将其横坐标伸长到原来的2倍得到曲线C2
(1)求曲线C2的直角坐标方程;
(2)过点P(1,2)的直线与曲线C2交于A、B两点,求|PA||PB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列两个函数表示相等函数的是(  )
A.f(x)=lgx2,g(x)=2lgxB.f(x)=1,g(x)=x0
C.$f(x)=\sqrt{x^2},g(x)={(\sqrt{x})^2}$D.$f(x)=x,g(x)={log_a}{a^x}(a>0且a≠1)$

查看答案和解析>>

同步练习册答案