【题目】某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力.每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训.已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.
(1)任选1名下岗人员,求该人参加过培训的概率;
(2)任选3名下岗人员,记ξ为3人中参加过培训的人数,求ξ的分布列.
【答案】(1)任选1名下岗人员,记“该人参加过财会培训”为事件A,“该人参加过计算机培训”为事件B,由题意知,A与B相互独立,且P(A)=0.6,
P(B)=0.75.
所以,该下岗人员没有参加过培训的概率为
P()=P()·P()
=(1-0.6)(1-0.75)=0.1.
∴该人参加过培训的概率为1-0.1=0.9.
(2)因为每个人的选择是相互独立的,所以3人中参加过培训的人数ξ服从二项分布,即ξ~B(3,0.9),
P(ξ=k)=C0.9k×0.13-k,k=0,1,2,3,
∴ξ的分布列是
ξ | 0 | 1 | 2 | 3 |
P | 0.001 | 0.027 | 0.243 | 0.729 |
【解析】
任选1名下岗人员,记“该人参加过财会培训”为事件A,“该人参加过计算机培训”为事件B,由事件A,B相互独立,且P(A)=0.6,P((B)=0.75.(1)任选1名下岗人员,该人没有参加过培训的概率是:P1=.利用对立事件的概率计算公式即可该人参加过培训的概率是P2=1﹣P1.(2)因为每个人的选择是相互独立的,所以3人中参加过培训的人数X服从二项分布B(3,0.9).利用二项分布的概率计算公式即可得出.
任选1名下岗人员,记“该人参加过财会培训”为事件A,“该人参加过计算机培训”为事件B,由题意知,事件A,B相互独立,且P(A)=0.6,P((B)=0.75.
(1)任选1名下岗人员,该人没有参加过培训的概率是:P1===0.4×0.25=0.1.所以该人参加过培训的概率是P2=1﹣P1=1﹣0.1=0.9.
(2)因为每个人的选择是相互独立的,所以3人中参加过培训的人数X服从二项分布B(3,0.9).P(X=k)=(k=0,1,2,3).
即X的概率分布列如下表:
科目:高中数学 来源: 题型:
【题目】把函数y=cos(2x+φ)(|φ|< )的图象向左平移 个单位,得到函数y=f(x)的图象关于直线x= 对称,则φ的值为( )
A.﹣
B.﹣
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,多面体ABCDS中,面ABCD为矩形,SD⊥AD,且SD⊥AB,AD=1,AB=2,SD= .
(1)求证:CD⊥平面ADS;
(2)求AD与SB所成角的余弦值;
(3)求二面角A﹣SB﹣D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面给出的命题中:
(1)“双曲线的方程为”是“双曲线的渐近线为”的充分不必要条件;
(2)“”是“直线与直线互相垂直”的必要不充分条件;
(3)已知随机变量服从正态分布,且,则;
(4)已知圆,圆,则这两个圆有3条公切线.
其中真命题的个数为( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将7名应届师范大学毕业生分配到3所中学任教.
(1)4个人分到甲学校,2个人分到乙学校,1个人分到丙学校,有多少种不同的分配方案?
(2)一所学校去4个人,另一所学校去2个人,剩下的一个学校去1个人,有多少种不同的分配方案?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆上动点到两个焦点的距离之和为4,且到右焦点距离的最大值为.
(1)求椭圆的方程;
(2)设点为椭圆的上顶点,若直线与椭圆交于两点(不是上下顶点).试问:直线是否经过某一定点,若是,求出该定点的坐标;若不是,请说明理由;
(3)在(2)的条件下,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直线和将圆分成4部分,用5种不同颜色给四部分染色,每部分染一种颜色,相邻部分不能染同一种颜色,则不同的染色方案有
A 120种 B 240种 C 260种 D 280种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面几何中,可以得出正确结论:“正三角形的内切圆半径等于这个正三角形的高的.”拓展到空间中,类比平面几何的上述结论,则正四面体的内切球半径等于这个正四面体的高的( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com