精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 的离心率为 ,且过点 是椭圆 上异于长轴端点的两点.
(1)求椭圆 的方程;
(2)已知直线 ,且 ,垂足为 ,垂足为 ,若 ,且 的面积是 面积的5倍,求 面积的最大值.

【答案】
(1)解:依题意 解得

故椭圆 的方程为 .


(2)解:设直线 轴相交于点

由于

(舍去)或

即直线 经过点

的直线方程为:

,所以

因为 ,所以 上单调递增,所以在 上单调递增,

所以 ,所以 (当且仅当 ,即 时“ ”成立),

的最大值为3.


【解析】(1)由离心率和过已知点得到关于a,b,c的方程组求a,b,c得到椭圆方程。
(2)通过已知两个三角形面积的关系得到直线AB过定点,再设直线AB的方程,代入到椭圆方程中得到方程组,消去x得关于y的一元二次方程,由韦达定理及弦长公式将所求三角形面积表示为关于m的函数式,用均值不等式求最大值。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,点的中点.

(1)求证: 平面

(2)若平面 求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的四边形ABCD,已知 =(6,1), =(x,y), =(﹣2,﹣3)

(1)若 且﹣2≤x<1,求函数y=f(x)的值域;
(2)若 ,求x,y的值及四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱 中,底面为正三角形,侧棱垂直底面, .若 分别是棱 上的点,且 ,则异面直线 所成角的余弦值为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某车间的一台机床生产出一批零件,现从中抽取8件,将其编为 ,…, ,测量其长度(单位: ),得到下表中数据:

编号

长度

1.49

1.46

1.51

1.51

1.53

1.51

1.47

1.51

其中长度在区间内的零件为一等品.

(1)从上述8个零件中,随机抽取一个,求这个零件为一等品的概率;

(2)从一等品零件中,随机抽取2个.

①用零件的编号列出所有可能的抽取结果;

②求这2个零件长度相等的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以点A(﹣1,2)为圆心的圆与直线m:x+2y+7=0相切,过点B(﹣2,0)的动直线l与圆A相交于M、N两点
(1)求圆A的方程.
(2)当|MN|=2 时,求直线l方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin2x﹣ sinxcosx+ ,g(x)=mcos(x+ )﹣m+2
(1)若对任意的x1 , x2∈[0,π],均有f(x1)≥g(x2),求m的取值范围;
(2)若对任意的x∈[0,π],均有f(x)≥g(x),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心为半径为1,点.

写出圆的标准方程并判断点与圆的位置关系

若一条光线从点射出轴反射后反射光线经过圆心求入射光线所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知abc为某一直角三角形的三条边长,c为斜边.若点(mn)在直线ax+by+2c=0上,则m2+n2的最小值是

查看答案和解析>>

同步练习册答案