【题目】函数的图象大致为( )
A. B.
C. D.
【答案】C
【解析】
由函数的解析式 ,当时,是函数的一个零点,属于排除A,B,
当x∈(0,1)时,cosx>0,,函数f(x) <0,函数的图象在x轴下方,排除D.
本题选择C选项.
点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.
【题型】单选题
【结束】
12
【题目】设,则的最小值是( )
A. B. C. D.
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱台ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,四边形ABCD为菱形,∠BAD=120°,AB=AA1=2A1B1=2. (Ⅰ)若M为CD中点,求证:AM⊥平面AA1B1B;
(Ⅱ)求直线DD1与平面A1BD所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知圆与轴的左右交点分别为,与轴正半轴的交点为.
(1)若直线过点并且与圆相切,求直线的方程;
(2)若点是圆上第一象限内的点,直线分别与轴交于点,点是线段的中点,直线,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,AB是⊙O的直径,VA 垂直于⊙O所在的平面,点C是圆周上不同于A,B的任意一点,M,N分别为VA,VC的中点,则下列结论正确的是( )
A. MN∥AB B. MN与BC所成的角为45°
C. OC⊥平面VAC D. 平面VAC⊥平面VBC
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x+a|+|2x+1|,a∈R.
(1)当a=1时,求不等式f(x)≤1的解集;
(2)设关于x的不等式f(x)≤-2x+1的解集为P,且 P,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: + =1(a>b>0)的左、右焦点分别为F1、F2 , 椭圆C过点P(1, ),直线PF1交y轴于Q,且 =2 ,O为坐标原点.
(1)求椭圆C的方程;
(2)设M是椭圆C的上顶点,过点M分别作直线MA,MB交椭圆C于A,B两点,设这两条直线的斜率分别为k1 , k2 , 且k1+k2=2,证明:直线AB过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A(1,2),过点P(5,﹣2)的直线与抛物线y2=4x相交于B,C两点,则△ABC是( )
A.直角三角形
B.钝角三角形
C.锐角三角形
D.不能确定
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的图像是由函数的图像经如下变换得到:先将图像上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图像向右平移个单位长度.
(Ⅰ)求函数的解析式,并求其图像的对称轴方程;
(Ⅱ)已知关于的方程在内有两个不同的解.
(1)求实数m的取值范围;
(2)证明:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列判断错误的是
A. 若随机变量服从正态分布,则;
B. 若组数据的散点都在上,则相关系数;
C. 若随机变量服从二项分布: , 则;
D. 是的充分不必要条件;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com