【题目】设点O为坐标原点,椭圆E: (a≥b>0)的右顶点为A,上顶点为B,过点O且斜率为 的直线与直线AB相交M,且 .
(Ⅰ)求椭圆E的离心率e;
(Ⅱ)PQ是圆C:(x﹣2)2+(y﹣1)2=5的一条直径,若椭圆E经过P,Q两点,求椭圆E的方程.
【答案】解:(Ⅰ)∵椭圆E: (a≥b>0)的右顶点为A,上顶点为B,
∴A(a,0),B(0,b), ,∴M( , ).
∴ ,解得a=2b,
∴ ,
∴椭圆E的离心率e为 .
(Ⅱ)由(Ⅰ)知a=2b,∴椭圆E的方程为 ,即x2+4y2=4b2(1)
依题意,圆心C(2,1)是线段PQ的中点,且 .
由对称性可知,PQ与x轴不垂直,
设其直线方程为y=k(x﹣2)+1,代入(1)得:
(1+4k2)x2﹣8k(2k﹣1)x+4(2k﹣1)2﹣4b2=0
设P(x1,y1),Q(x2,y2),
则 , ,
由 得 ,解得 .
从而x1x2=8﹣2b2.
∴ .
解得:b2=4,a2=16,∴椭圆E的方程为 .
【解析】(Ⅰ)推导出A(a,0),B(0,b),M( , ),从而 ,进而a=2b,由此能求出椭圆E的离心率.(Ⅱ)设椭圆E的方程为 ,设直线PQ的方程为y=k(x﹣2)+1,与椭圆联立得(1+4k2)x2﹣8k(2k﹣1)x+4(2k﹣1)2﹣4b2=0,由此利用韦达定理、中点坐标公式、弦长公式,求出a,b,由此能求出椭圆E的方程.
科目:高中数学 来源: 题型:
【题目】新学年伊始,某中学学生社团开始招新,某高一新生对“海济公益社”、“理科学社”、“高音低调乐社”很感兴趣,假设她能被这三个社团接受的概率分别为 , , .
(1)求此新生被两个社团接受的概率;
(2)设此新生最终参加的社团数为ξ,求ξ的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某科考试中,从甲、乙两个班级各抽取10名同学的成绩进行统计分析,两班成绩的茎叶图如图所示,成绩不小于90分为及格. (Ⅰ)设甲、乙两个班所抽取的10名同学成绩方差分别为 、 ,比较 、 的大小(直接写出结果,不写过程);
(Ⅱ)从甲班10人任取2人,设这2人中及格的人数为X,求X的分布列和期望;
(Ⅲ)从两班这20名同学中各抽取一人,在已知有人及格的条件下,求抽到乙班同学不及格的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,且,向量, .
(1)求函数的解析式,并求当时, 的单调递增区间;
(2)当时, 的最大值为5,求的值;
(3)当时,若不等式在上恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图都是边长为1的正方体叠成的几何体,例如第(1)个几何体的表面积为6个平方单位,第(2)个几何体的表面积为18个平方单位,第(3)个几何体的表面积是36个平方单位.依此规律,则第n个几何体的表面积是个平方单位.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在区间[2a,a+1]上不单调,求实数a的取值范围;
(3)在区间[-1,1]上,y=f(x)的图象恒在y=2x+2m+1的图象上方,试确定实数m的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图:已知抛物线 C1:y2=2px (p>0),直线 l 与抛物线 C 相交于 A、B 两点,且当倾斜角为 60°的直线 l 经过抛物线 C1 的焦点 F 时,有|AB|= .
(Ⅰ)求抛物线 C 的方程;
(Ⅱ)已知圆 C2:(x﹣1)2+y2= ,是否存在倾斜角不为 90°的直线 l,使得线段 AB 被圆 C2截成三等分?若存在,求出直线 l 的方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com