精英家教网 > 高中数学 > 题目详情

【题目】

已知椭圆.过点(m,0)作圆的切线l交椭圆GAB两点.

I)求椭圆G的焦点坐标和离心率;

II)将表示为m的函数,并求的最大值.

【答案】)焦点坐标为,离心率为

(Ⅱ). |AB|的最大值为2

【解析】

试题(1)先由椭圆的标准方程求出值,再利用求出值,进而写出焦点坐标和离心率;(2)先讨论两种特殊情况(点在圆上,即斜率不存在的情况),再设出切线的点斜式方程,利用直线与圆相切得到的关系,再联立直线与椭圆的方程,利用根与系数的关系和弦长公式得到关于的关系式,再利用基本不等式进行求解.

试题解析:(1)由已知得:,所以

所以椭圆G的焦点坐标为

离心率为

2)由题意知:

时,切线的方程为,点AB的坐标分别为

此时

时,同理可得

时,设切线的方程为.由,得

AB两点的坐标分别为,则

又由与圆相切,得,即

所以

由于当时,

所以

因为,且当时,

所以的最大值为2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性

(2)若函数在区间上存在两个不同零点求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,倾斜角为的直线的参数方程为为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

(Ⅰ)求直线的普通方程和曲线的直角坐标方程;

(Ⅱ)已知点,若点的极坐标为,直线经过点且与曲线相交于两点,设线段的中点为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙、丁四位同学中仅有一人申请了北京大学的自主招生考试,当他们被问到谁申请了北京大学的自主招生考试时,甲说:“丙或丁申请了”;乙说:“丙申请了”;丙说:“甲和丁都没有申请”;丁说:“乙申请了”,如果这四位同学中只有两人说的是对的,那么申请了北京大学的自主招生考试的同学是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高斯函数是数学中的一个重要函数,在自然科学社会科学以及工程学等领域都能看到它的身影.,用符号表示不大于的最大整数,如,则叫做高斯函数.给定函数,若关于的方程5个解,则实数的取值范围为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,若椭圆上一点满足,过点的直线与椭圆交于两点.

(1)求椭圆的方程;

(2)过点轴的垂线,交椭圆,求证:存在实数,使得.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题对任意实数,不等式恒成立;命题方程表示焦点在轴上的双曲线.

(1)若命题为真命题,求实数的取值范围;

(2)若命题:为真命题,且为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(Ⅰ)若函数处取得极值,求实数的值,

(Ⅱ)在(Ⅰ)的结论下,若关于的不等式,当时恒成立,求的值.

(Ⅲ)令,若关于的方程内至少有两个解,求出实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于的方程有两个不同的实数根.

(Ⅰ)求实数的取值范围;

(Ⅱ)求证:.

查看答案和解析>>

同步练习册答案