精英家教网 > 高中数学 > 题目详情

已知定义在R上的函数f(x)=(x2-3x+2)g(x)+3x-4,其中函数y=g(x)的图象是一条连续不断的曲线,则函数f(x)在下列哪个区间内必有零点


  1. A.
    (0,1)
  2. B.
    (1,2)
  3. C.
    (2,3)
  4. D.
    (3,4)
B
分析:注意到函数x2-4x+2有两个零点2和3,所以我们求f(1)•f(2)的值的符号,利用二分法的思想即可解决.
解答:∵x2-3x+2=(x-1)(x-2),函数f(x)=(x2-3x+2)g(x)+3x-4,
∴f(1)=3-4=-1,f(2)=6-4=2,f(1)•f(2)=-1×2<0,
∴由零点存在定理得:方程f(x)=0在(1,2)范围内有实数根,即函数f(x)在(1,2)范围内有零点,
故选B.
点评:二分法是求方程根的一种算法,其理论依据是零点存在定理:一般地,若函数y=f(x)在区间[a,b]上的图象是一条不间断的曲线,且f(a)f(b)<0,则函数y=f(x)
在区间(a,b)上有零点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)满足下列条件:
①对任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函数,
则下列不等式中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  则:
①f(3)的值为
0
0

②f(2011)的值为
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f(x+1)=-f(x),且x∈(-1,1]时f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,则f(3)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)是偶函数,对x∈R都有f(2+x)=f(2-x),当f(-3)=-2时,f(2013)的值为(  )
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x),对任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2013)=(  )
A、0B、2013C、3D、-2013

查看答案和解析>>

同步练习册答案