精英家教网 > 高中数学 > 题目详情

【题目】为增强市民的节能环保意识,郑州市面向全市征召义务宣传志愿者. 从符合条件的500名志愿者中随机抽取100名,其年龄频率分布直方图如图所示,其中年龄分组区是: .

(Ⅰ)求图中的值,并根据频率分布直方图估计这500名志愿者中年龄在岁的人数;

(Ⅱ)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取10名参加中心广场的宣传活动,再从这10名志愿者中选取3名担任主要负责人. 记这3名志愿者中“年龄低于35岁”的人数为,求的分布列及数学期望.

【答案】(Ⅰ)(Ⅱ)

【解析】

试题分析:(Ⅰ)频率分布直方图中小长方形面积为对应概率,可得,即得的值,由总数与概率的乘积等于频数得年龄在岁的人数为(Ⅱ)先按分层抽样得年龄“低于35岁”的人有6名,从而确定随机变量取法为0,1,2,3,再利用组合数求出对应概率,列表可得概率分布,最后根据数学期望公式求数学期望

试题解析:(Ⅰ)∵小矩形的面积等于频率,∴除外的频率和为0.70,

500名志愿者中,年龄在岁的人数为(人).

(Ⅱ)用分层抽样的方法,从中选取10名,则其中年龄“低于35岁”的人有6名,

“年龄不低于35岁”的人有4名. 的可能取值为0,1,2,3,

, ,

, ,

的分布列为

0

1

2

3

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知

1判断的奇偶性并说明理由;2求证:函数上是增函数;

3,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数

1时,求函数的定义域;

2是否存在实数,使函数递减,并且最大值为1,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足是数列的前项的和

1若数列为等差数列

求数列的通项

若数列满足,数列满足,试比较数列项和项和的大小;

2若对任意恒成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1时,恒成立,求实数的取值范围;

2是否存在整数,使得关于的不等式的解集为?若存在,求出的值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2+2x-4y+3=0.

1若圆C的切线在x轴和y轴上的截距相等,求此切线的方程.

2点P在直线l:2x-4y+3=0上,过点P作圆C的切线,切点记为M,求使|PM|最小的点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是实数,

1)若函数为奇函数,求的值;

2)试用定义证明:对于任意上为单调递增函数;

3)若函数为奇函数,且不等式对任意恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v单位:千米/小时是车流密度x单位:辆/千米的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.

1当0≤x≤200时,求函数vx的表达式;

2当车流密度x为多大时,车流量单位时间内通过桥上某测观点的车辆数,单位:辆/小时fxx·vx可以达到最大,并求出最大值.(精确到1辆/小时

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱ABCA1B1C1的底面是边长为2的正三角形,E,F分别是BC,CC1的中点.

(Ⅰ)证明:平面AEF⊥平面B1BCC1

(Ⅱ)若直线A1C与平面A1ABB1所成的角为45°,求三棱锥FAEC的体积.

查看答案和解析>>

同步练习册答案