精英家教网 > 高中数学 > 题目详情

【题目】已知点是圆上的任意一点,点为圆的圆心,点与点关于平面直角系的坐标原点对称,线段的垂直平分线与线段交于点.

(1)求动点的轨迹的方程;

(2)若轨迹轴正半轴交于点,直线交轨迹两点,求面积的取值范围.

【答案】(1)(2)

【解析】试题分析:(1)根据圆的的性质及对称的几何性质可得,动点的轨迹是以为焦点,4为长轴长的椭圆,从而可得结果;(2)把直线,代入椭圆方程消去得: ,根据韦达定理、弦长公式 及点到直线的距离公式、三角形面积公式可将的面积表示为关于 的函数,利用基本不等式求最值即可.

试题解析:(1)由题意知圆的圆心为,半径为4,

所以

由椭圆的定义知,动点的轨迹是以为焦点,4为长轴长的椭圆,

设椭圆的方程为),且焦距为 ,则:

,即

故椭圆的方程为

(2)把直线

代入椭圆方程消去得:

得:

因为直线与椭圆相交于两点

因为点,直线轴交于点

的面积

当且仅当,即时取等号,

满足

所心面积的取值范围是.

【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求范围,属于难题.解决圆锥曲线中的范围问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形范围的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某书店销售刚刚上市的某知名品牌的高三数学单元卷,按事先拟定的价格进行5天试销,每种单价试销1天,得到如表数据:

单价x(元)

18

19

20

21

22

销量y(册)

61

56

50

48

45

(1)求试销5天的销量的方差和yx的回归直线方程;

(2)预计今后的销售中,销量与单价服从(1)中的回归方程,已知每册单元卷的成本是14元,

为了获得最大利润,该单元卷的单价应定为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=x2﹣lnx

1)求曲线fx)在点(1f1))处的切线方程;

2)求函数fx)的单调递减区间:

3)设函数gx=fx﹣x2+axa0,若xOe]时,gx)的最小值是3,求实数a的值.(e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是等边三角形,边长为4, 边的中点为,椭圆 为左、右两焦点,且经过两点。

(1)求该椭圆的标准方程;

(2)过点轴不垂直的直线交椭圆于 两点,求证:直线的交点在一条定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为为参数).

(Ⅰ)写出直线的普通方程与曲线的直角坐标方程;

(Ⅱ)设曲线经过伸缩变换得到曲线,若点,直线交与 ,求 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,角A,B,C的对边分别为a,b,c,且2bcosC+c=2a.

(Ⅰ)求角B的大小;

(Ⅱ)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(Ⅰ)讨论的单调性;

(Ⅱ)当时,讨论的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某地区儿童的身高与体重的一组数据,我们用两种模型①,②拟合,得到回归方程分别为 ,作残差分析,如表:

身高

60

70

80

90

100

110

体重

6

8

10

14

15

18

0.41

0.01

1.21

-0.19

0.41

-0.36

0.07

0.12

1.69

-0.34

-1.12

(Ⅰ)求表中空格内的值;

(Ⅱ)根据残差比较模型①,②的拟合效果,决定选择哪个模型;

(Ⅲ)残差大于的样本点被认为是异常数据,应剔除,剔除后对(Ⅱ)所选择的模型重新建立回归方程.

(结果保留到小数点后两位)

附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱ABOABO中,AOB=90°,侧棱OO′⊥OABOAOBOO′=2.C为线段OA的中点,在线段BB上求一点E,使|EC|最小.

查看答案和解析>>

同步练习册答案