精英家教网 > 高中数学 > 题目详情

如图,已知抛物线和⊙,过抛物线上一点作两条直线与⊙相切于两点,分别交抛物线为E、F两点,圆心点到抛物线准线的距离为

(1)求抛物线的方程;
(2)当的角平分线垂直轴时,求直线的斜率;
(3)若直线轴上的截距为,求的最小值.

(1);(2);(3).

解析试题分析:本题考查抛物线、圆的标准方程以及直线与抛物线、圆的位置关系,突出解析几何的基本思想和方法的考查:如数形结合思想、坐标化方法等.第一问,据点到准线的距离为,直接列式求得,得到抛物线的标准方程;第二问,据条件的角平分线为,即轴,得,而关于对称,所以,利用两点斜率公式代入得,所以求得;第三问,先求直线的方程,再求的方程,令,可得到,利用函数的单调性求函数的最值.
试题解析:(1)∵点到抛物线准线的距离为
,即抛物线的方程为
(2)法一:∵当的角平分线垂直轴时,点,∴

,  ∴
.   
法二:∵当的角平分线垂直轴时,点,∴,可得,∴直线的方程为
联立方程组,得
  ∴
同理可得,∴
(3)法一:设,∵,∴
可得,直线的方程为
同理,直线的方程为


∴直线的方程为
,可得
关于的函数在单调递增,  ∴
法二:设点
为圆心,为半径的圆方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知双曲线方程2x2-y2=2.
(1)求以A(2,1)为中点的双曲线的弦所在的直线方程;
(2)过点(1,1)能否作直线l,使l与双曲线交于Q1,Q2两点,且Q1,Q2两点的中点为(1,1)?如果存在,求出它的方程;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心为直角坐标系的原点,焦点在轴上,它的一个顶点到两个焦点的距离分别是7和1.
(1)求椭圆的方程;
(2)若为椭圆的动点,为过且垂直于轴的直线上的点,为椭圆的离心率),求点的轨迹方程,并说明轨迹是什么曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线y2=-x与直线y=k(x+1)交于A、B两点.
(1)求证:OA⊥OB;
(2)当DAOB的面积等于时,求k的值. 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线,求曲线过点的切线方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆,若椭圆的右顶点为圆的圆心,离心率为.
(1)求椭圆的方程;
(2)若存在直线,使得直线与椭圆分别交于两点,与圆分别交于两点,点在线段上,且,求圆的半径的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知动圆经过点,且和直线相切,
(1)求动圆圆心的轨迹C的方程;
(2)已知曲线C上一点M,且5,求M点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知A(-5,0),B(5,0),动点P满足||,|,8成等差数列.
(1)求P点的轨迹方程;
(2)对于x轴上的点M,若满足||·||=,则称点M为点P对应的“比例点”.问:对任意一个确定的点P,它总能对应几个“比例点”?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆过点,离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点且斜率为)的直线与椭圆相交于两点,直线分别交直线 于两点,线段的中点为.记直线的斜率为,求证: 为定值.

查看答案和解析>>

同步练习册答案