精英家教网 > 高中数学 > 题目详情
4.如图,射线OA,OB与x轴的正方向分别成45°与30°的角,过点P(1,0)的直线与两射线分别交于C,D,若线段CD的中点恰好在直线y=$\frac{1}{2}$x上,求CD所在直线的方程.

分析 由题意直线AB的斜率不为0,因为过点P,故可设为:x=my+1,分别与射线OA、OB联立,求出C、D点坐标,求出中点坐标,因为CD的中点在直线y=$\frac{1}{2}$x上,代入求解即可.

解答 解:在直角坐标系中,射线OA、OB分别与x轴成45°角和30°角,可得射线OA:x-y=0(x≥0),OB:$\sqrt{3}$x+3y=0(x≥0),
由题意直线AB的斜率不为0,因为过点P,故可设为:x=my+1,
分别与射线OA、OB联立,得C($\frac{1}{1-m}$,$\frac{1}{1-m}$),D($\frac{\sqrt{3}}{m+\sqrt{3}}$,-$\frac{1}{m+\sqrt{3}}$)
可知CD的中点坐标为:($\frac{1}{2}$($\frac{1}{1-m}$+$\frac{\sqrt{3}}{m+\sqrt{3}}$),$\frac{1}{2}$($\frac{1}{1-m}$-$\frac{1}{m+\sqrt{3}}$)),
因为AB的中点在直线y=$\frac{1}{2}$x上,所以$\frac{1}{2}$($\frac{1}{1-m}$-$\frac{1}{m+\sqrt{3}}$)=$\frac{1}{2}$×$\frac{1}{2}$($\frac{1}{1-m}$+$\frac{\sqrt{3}}{m+\sqrt{3}}$),
解得:m=$\frac{3-\sqrt{3}}{3}$,所以直线CD的方程为3x-(3-$\sqrt{3}$)y-3=0

点评 本题考查两条直线的交点坐标、中点坐标公式及求直线方程问题,考查运算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.设连续函数f(x)的定义域为R,已知,若函数f(x)无零点,则f(x)>0或f(x)<0恒成立.
(1)用反证法证明:“若存在实数x0,使得f(f(x0))=x0,则至少存在一个实数a,使得f(a)=a”;
(2)若f(x)=ex-$\frac{1}{{e}^{x}}$+x2-2cosx-mx-2,有且仅有一个实数x0,使得f(f(x0))=x0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.sin22.5°•cos22.5°=$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,终边落在直线y=±x上的角α的集合是(  )
A.{α|α=k•360°+45°,k∈Z}B.{α|α=k•180°+45°,k∈Z}
C.{α|α=k•180°-45°,k∈Z}D.{α|α=k•90°+45°,k∈Z}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知P1(x1,y1),P2(x2,y2)是斜率为k的直线上的两点,
求证:|P1P2|=$\sqrt{1+{k}^{2}}$|x1-x2|=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)和抛物线y2=2px(p>0)相交于A、B两点,直线AB过抛物线的焦点F1,且|AB|=8,椭圆的离心率为$\frac{\sqrt{2}}{2}$.
(I)求椭圆和抛物线的标准方程;
(Ⅱ)是否存在过(-2,0)与抛物线相切且被椭圆截得的弦CD的长恰为$\frac{20\sqrt{2}}{3}$的直线,若不存在.请说明理由;若存在,请求出直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在直角坐标平面内,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的参数方程为$\left\{\begin{array}{l}x=2cosa\\ y=2sina\end{array}\right.$(a为参数).直线l的极坐标方程为ρcos($θ-\frac{π}{6}$)=2.
(1)分别求出曲线C和直线l的直角坐标方程;
(2)若点P在曲线C上,且点P到直线1的距离为1.求满足这样条件的点P的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列各函数中,为指数函数的是(  )
A.y=(-1.3)xB.y=${(\frac{1}{2})}^{x}$C.y=x2D.y=x-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设O点为坐标原点,曲线x2+y2+2x-6y+1=0上有两点P、Q关于直线x+my+4=0对称,且以线段PQ为直径的圆过坐标原点O.
(1)求m的值;
(2)求直线PQ的方程.
(3)M为x轴上的一点,当△MPQ为钝角三角形时,求M的横坐标的取值范围.

查看答案和解析>>

同步练习册答案