精英家教网 > 高中数学 > 题目详情
18.在一个有穷数列每相邻两项之间添加一项,使其等于两相邻项的和,我们把这样的操作叫做该数列的一次“H扩展”.已知数列1,2.第一次“H扩展”后得到1,3,2;第二次“H扩展”后得到1,4,3,5,2; 那么第10次“H扩展”后得到的数列的所有项的和为(  )
A.88572B.88575C.29523D.29526

分析 通过分析前几次中每次“H扩展”后增加的项的和,得出规律:第n次“H扩展”后增加的项的和为3n,进而利用等比数列的求和公式计算即得结论.

解答 解:由题意可知,第1次“H扩展”后增加的项的和为3,
第2次“H扩展”后增加的项的和为4+5=9,
第3次“H扩展”后增加的项的和为5+7+8+7=27,

第n次“H扩展”后增加的项的和为3n
∴第n次“H扩展”后得到的数列的所有项的和为1+2+3+32+…+3n=2+$\frac{1-{3}^{n+1}}{1-3}$=$\frac{1}{2}$•3n+1+$\frac{3}{2}$,
于是所求值为$\frac{1}{2}$•311+$\frac{3}{2}$=88575,
故选:B.

点评 本题考查数列的求和,考查分析问题、解决问题的能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.若($\overrightarrow{a}$+3$\overrightarrow{b}$)⊥(7$\overrightarrow{a}$-5$\overrightarrow{b}$),且($\overrightarrow{a}$-4$\overrightarrow{b}$)⊥(7$\overrightarrow{a}$-5$\overrightarrow{b}$),则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角大小为0或π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,若△ABC的面积S=a2-b2-c2+2bc,则sinA=$\frac{8}{17}$.(用数值作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.有一列向量$\left\{{\overrightarrow{a_n}}\right\}$:$\overrightarrow{a_1}=({x_1},{y_1}),\overrightarrow{a_2}=({x_2},{y_2}),…,\overrightarrow{a_n}=({x_n},{y_n})$,如果从第二项起,每一项与前一项的差都等于同一个向量,那么这列向量称为等差向量列.已知等差向量列$\left\{{\overrightarrow{a_n}}\right\}$,满足$\overrightarrow{a_1}=(-20,13)$,$\overrightarrow{a_3}=(-18,15)$,那么这列向量$\left\{{\overrightarrow{a_n}}\right\}$中模最小的向量的序号n=4或5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知{an}是等比数列,给出以下四个命题:①{2a3n-1}是等比数列;②{an+an+1}是等比数列;③{anan+1}是等比数列;④{lg|an|}是等比数列,下列命题中正确的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.“直线l1、l2互相垂直”是“直线l1、l2的斜率之积等于-1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既非充分也非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.函数f(x)=3cos2$\frac{ωx}{2}$+$\frac{\sqrt{3}}{2}$sinωx-$\frac{3}{2}$(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B、C为图象与x轴的交点,且△ABC为等边三角形.将函数f(x)的图象上各点的横坐标变为原来的π倍,将所得图象向右平移$\frac{2π}{3}$个单位,再向上平移1个单位,得到函数y=g(x)的图象
(1)求函数g(x)的解析式;
(2)求h(x)=lg[g(x)-$\frac{5}{2}$]的定义域;
(3)若3sin2$\frac{x}{2}$-$\sqrt{3}$m[g(x)-1]≥m+2对任意x∈[0,2π]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列条件能唯一确定一个平面的是(  )
A.空间任意三点B.不共线三点C.共线三点D.两条异面直线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.{an}为等比数列,若a2=2,a5=$\frac{1}{4}$,则a1a2+a2a3+…+anan+1=$\frac{32}{3}$(1-$\frac{1}{{4}^{n}}$).

查看答案和解析>>

同步练习册答案