精英家教网 > 高中数学 > 题目详情
16.如图,在四棱锥P-ABCD中,AD∥BC,∠BAD=90°,PA=PD,AB⊥PA,AD=2,AB=BC=1
(Ⅰ)求证:平面PAD⊥平面ABCD
(Ⅱ)若E为PD的中点,求证:CE∥平面PAB
(Ⅲ)若DC与平面PAB所成的角为30°,求四棱锥P-ABCD的体积.

分析 (Ⅰ)推导出AB⊥AD,AB⊥PA,由此能证明平面PAD⊥平面ABCD.
(Ⅱ)取PA的中点F,连接BF,EF.推导出四边形BCEG是平行四边形,从而EC∥BF,由此能证明CE∥平面PAB.
(Ⅲ)过P作PO⊥AD于O,连接OC.建立空间直角坐标系O-xyz利用向量法能求出四棱锥P-ABCD的体积.

解答 (本小题满分14分)
证明:(Ⅰ)因为∠BAD=90°,所以AB⊥AD,(1分)
又因为AB⊥PA,
所以AB⊥平面PAD.(3分)
所以平面PAD⊥平面ABCD.(4分)
解:(Ⅱ)取PA的中点F,连接BF,EF.(5分)
因为E为PD的中点,所以EF∥AD,$EF=\frac{1}{2}AD$,
又因为BC∥AD,$BC=\frac{1}{2}AD$,
所以BC∥EF,BC=EF.
所以四边形BCEG是平行四边形,EC∥BF.(7分)
又BF?平面PAB,CE?平面PAB,
所以CE∥平面PAB.(8分)
(Ⅲ)过P作PO⊥AD于O,连接OC.
因为PA=PD,所以O为AD中点,又因为平面PAD⊥平面ABCD,
所以PO⊥平面ABCD.
如图建立空间直角坐标系O-xyz.(9分)
设PO=a.由题意得,A(0,1,0),B(1,1,0),C(1,0,0),D(0,-1,0),P(0,0,a).
所以$\overrightarrow{AB}$=(1,0,0),$\overrightarrow{PA}$=(0,1,-a),$\overrightarrow{DC}$=(1,1,0).
设平面PCD的法向量为$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AB}=x=0}\\{\overrightarrow{n}•\overrightarrow{AB}=y-az=0}\end{array}\right.$,
令z=1,则y=a.所以$\overrightarrow{n}$=(0,a,1).(11分)
因为DC与平面PAB所成角为30°,
所以|cos<$\overrightarrow{n},\overrightarrow{DC}$>|=$\frac{|\overrightarrow{n}•\overrightarrow{DC}|}{|\overrightarrow{n}|•|\overrightarrow{DC}|}$=$\frac{|\overrightarrow{a}|}{\sqrt{{a}^{2}+1}•\sqrt{2}}$=sin30°=$\frac{1}{2}$,
解得a=1.(13分)
所以四棱锥P-ABCD的体积${V_{P-ABCD}}=\frac{1}{3}×{S_{ABCD}}×PO=\frac{1}{3}×\frac{1+2}{2}×1×1=\frac{1}{2}$.(14分)

点评 本题考查面面垂直的证明,考查线面平行的证明,考查四棱锥的体积的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知全集U={1,2,3,4},集合A={1,2},B={2,3},则A∪(∁UB)=(  )
A.{1}B.{2,3}C.{1,2,4}D.{2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.抛物线y=$\frac{1}{4}$x2的焦点坐标为(  )
A.(-$\frac{1}{16}$,0)B.($\frac{1}{16}$,0)C.(0,-1)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设变量x,y满足约束条件$\left\{\begin{array}{l}y≥0\\ x-y+1≥0\\ x+y-3≤0\end{array}\right.$则$z=\frac{x}{2}+y$的最大值为$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=\frac{1}{3}{x^3}+a{x^2}+(2a-1)x(a∈R)$.
(Ⅰ)若f(x)在点(0,0)处的切线方程为y=x,求a的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)当a=-1时,设f(x)在x1,x2(x1<x2)处取到极值,记M(x1,f(x1)).A(0,f(0)),B(1,f(1)),C(2,f(2)),判断直线AM、BM、CM与函数f(x)的图象各有几个交点(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线x2-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的一个焦点是(2,0),则其渐近线的方程为(  )
A.x±$\sqrt{3}$y=0B.$\sqrt{3}$x±y=0C.x±3y=0D.3x±y=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,角A,B,C的对边分别为a,b,c.若c=3,C=$\frac{π}{3}$,sinB=2sinA,则a=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴.已知曲线C的极坐标方程为ρ=8sinθ
(1)求曲线C的直角坐标方程;
(2)设直线$\left\{\begin{array}{l}x=t\\ y=t+2\end{array}\right.$(t为参数)与曲线C交于A,B两点,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在自然界中存在着大量的周期函数,比如声波.若两个声波随时间的变化规律分别为:y1=3$\sqrt{2}$sin(100πt),y2=3cos(100πt+$\frac{π}{4}$),则这两个声波合成后(即y=y1+y2)的声波的振幅为(  )
A.$6\sqrt{2}$B.$3+3\sqrt{2}$C.$3\sqrt{2}$D.3

查看答案和解析>>

同步练习册答案