精英家教网 > 高中数学 > 题目详情

【题目】某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.
(1)用每天生产的卫兵个数x与骑兵个数y表示每天的利润W(元);
(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?

【答案】
(1)解:依题意每天生产的伞兵个数为100﹣x﹣y,

所以利润W=5x+6y+3(100﹣x﹣y)

=2x+3y+300(x,y∈N).


(2)解:约束条件为

整理得

目标函数为W=2x+3y+300,

如图所示,作出可行域.

初始直线l0:2x+3y=0,平移初始直线经过点A时,W有最大值.

最优解为A(50,50),

所以Wmax=550(元).


【解析】(1)依题意,每天生产的伞兵的个数为100﹣x﹣y,根据题意即可得出每天的利润;(2)先根据题意列出约束条件,再根据约束条件画出可行域,设W=2x+3y+300,再利用T的几何意义求最值,只需求出直线0=2x+3y过可行域内的点A时,从而得到W值即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法中正确的是(
A.数据4、6、6、7、9、4的众数是4
B.一组数据的标准差是这组数据的方差的平方
C.数据3,5,7,9的标准差是数据6、10、14、18的标准差的一半
D.频率分布直方图中各小长方形的面积等于相应各组的频数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

求不等式的解集;

若函数的最小值为,整数满足,求证.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,三个内角A、B、C所对的边分别为a、b、c,且2bcosC=2a﹣c.
(1)求角B;
(2)若△ABC的面积S= ,a+c=4,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,三棱柱中,已知侧面 .

(1)求证: 平面

(2)是棱上的一点,若二面角的正弦值为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了估计某水池中鱼的尾数,先从水池中捕出2000尾鱼,并给每尾鱼做上标记(不影响存活),然后放回水池,经过适当的时间,再从水池中捕出500尾鱼,其中有标记的鱼为40尾,根据上述数据估计该水池中鱼的尾数为(  )
A.10000
B.20000
C.25000
D.30000

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,三棱柱中,已知侧面 .

(1)求证: 平面

(2)是棱上的一点,若二面角的正弦值为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , a1=10,an+1=9Sn+10.
(1)求证:{lgan}是等差数列;
(2)设 对所有的n∈N*都成立的最大正整数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图程序框图,如果输入的a=4,b=6,那么输出的n=(

A.3
B.4
C.5
D.6

查看答案和解析>>

同步练习册答案