精英家教网 > 高中数学 > 题目详情

【题目】在锐角△ABC中,A,B,C角所对的边分别为a,b,c,且 = sinC.
(1)求∠C;
(2)若 =2,求△ABC面积S的最大值.

【答案】
(1)解:由正弦定理可得sinAcosB+sinBcosA= sin2C,

∴sin(A+B)= sin2C,

∴sinC= sin2C,

∵sinC>0,

∴sinC=

∵C为锐角,

∴C=60°;


(2)解:由 = =2,可得c=

由余弦定理得3=b2+a2﹣ab≥ab(a=b时取等号),

∴S= =

∴△ABC面积S的最大值为


【解析】(1)由正弦定理可得sinAcosB+sinBcosA= sin2C,即可求∠C;(2)若 =2,可得c= .由余弦定理得3=b2+a2﹣ab≥ab(a=b时取等号),即可求△ABC面积S的最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】将圆x2+y2=1上每一点的纵坐标不变,横坐标变为原来的 ,得曲线C. (Ⅰ)写出C的参数方程;
(Ⅱ)设直线l:3x+y+1=0与C的交点为P1、P2 , 以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若曲线f(x)= (e﹣1<x<e2﹣1)和g(x)=﹣x3+x2(x<0)上分别存在点A、B,使得△OAB是以原点O为直角顶点的直角三角形,且斜边AB的中点在y轴上,则实数a的取值范围是(
A.(e,e2
B.(e,
C.(1,e2
D.[1,e)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1的参数方程为 (t是参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=8cos(θ﹣ ).
(1)求曲线C2的直角坐标方程,并指出其表示何种曲线;
(2)若曲线C1与曲线C2交于A,B两点,求|AB|的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a<0,曲线f(x)=2ax2+bx+c与曲线g(x)=x2+alnx在公共点(1,f(1))处的切线相同. (Ⅰ)试求c﹣a的值;
(Ⅱ)若f(x)≤g(x)+a+1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系,已知点R的极坐标为(2 ),曲线C的参数方程为 (θ为参数).
(1)求点R的直角坐标,化曲线C的参数方程为普通方程;
(2)设P为曲线C上一动点,以PR为对角线的矩形PQRS的一边垂直于极轴,求矩形PQRS周长的最小值,及此时P点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)= x3+ax2+bx+c有极值点x1 , x2(x1>x2),f(x1)=x1 , 则关于x的方程[f(x)]2+2af(x)+b=0的不同实数根的个数是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为节能减排,用9万元购进一台新设备用于生产,第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加3万元,该设备每年生产的收入均为21万元,设该设备使用了n(n∈N*)年后,盈利总额达到最大值(盈利额等于收入减去成本),则n等于(
A.6
B.7
C.8
D.7或8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+bx+c,且a>b>c,a+b+c=0,集合A={m|f(m)<0},则(
A.任意m∈A,都有f(m+3)>0
B.任意m∈A,都有f(m+3)<0
C.存在m∈A,都有f(m+3)=0
D.存在m∈A,都有f(m+3)<0

查看答案和解析>>

同步练习册答案