精英家教网 > 高中数学 > 题目详情
3.某商店预备在一个月内分批购入每张价值为20元的书桌共36台,每批都购入x台(x是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费.
(1)求该月需用去的运费和保管费的总费用f(x);
(2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由.
(3)要使该月用于支付运费和保管费的资金费用最少,每批进货的数量应为多少?

分析 (1)不妨设题中比例系数为k,每批购入x 台,共需分$\frac{36}{x}$批,每批价值为20x 元,总费用f(x)=运费+保管费;由x=4,y=52可得k,从而得f(x);
(2)每批进货的数量控制在4≤x≤9,资金才够用.令$\frac{144}{x}$+4x≤52,解不等式即可得到;
(3)由(1)的解析式,由基本不等式可求得当x为何值时,f(x)的最小值.

解答 解:(1)设题中比例系数为k,若每批购入x 台,则共需分$\frac{36}{x}$批,
每批价值为20x 元,
由题意,得:f(x)=$\frac{36}{x}$•4+k•20x,
由x=4时,y=52,得:k=$\frac{1}{5}$,
即有f(x)=$\frac{144}{x}$+4x(0<x≤36,x∈N);
(2)每批进货的数量控制在4≤x≤9,资金才够用.
理由如下:令$\frac{144}{x}$+4x≤52,化简为(x-4)(x-9)≤0,
解得4≤x≤9;
(3)由(1)知,f(x)=$\frac{144}{x}$+4x(0<x≤36,x∈N),
则f(x)≥2$\sqrt{\frac{144}{x}•4x}$=48,
当且仅当$\frac{144}{x}$=4x,即x=6时,上式等号成立;
故只需每批购入6张书桌,
可以使该月用于支付运费和保管费的资金费用最少.

点评 本题考查函数模型的运用,考查不等式的解法和基本不等式a+b≥2$\sqrt{ab}$(a>0,b>0)的应用:求最值,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.设定义域为[0,1]的函数f(x)同时满足以下三个条件时称f(x)为“友谊函数”:
(1)对任意的x∈[0,1],总有f(x)≥0;      
(2)f(1)=1;
(3)若x1≥0,x2≥0且x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2)成立,
则下列判断正确的序号有①②③.
①f(x)为“友谊函数”,则f(0)=0;
②函数g(x)=x在区间[0,1]上是“友谊函数”;
③若f(x)为“友谊函数”,且0≤x1<x2≤1,则f(x1)≤f(x2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.(文)在数列{an}中,a1=2,且对任意大于1的正整数n,点($\sqrt{{a}_{n}}$,$\sqrt{{a}_{n-1}}$)在直线y=x-$\sqrt{2}$上,则$\underset{lim}{n→∞}$$\frac{{a}_{n}}{(n+1)^{2}}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lg(100x+1)-ax,x∈R.
(Ⅰ)若函数f(x)是偶函数,求实数a的值;
(Ⅱ)在(Ⅰ)的条件下证明,函数f(x)在[0,+∞)上是单调函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某企业产品的成本前两年递增20%,经过引进的技术设备,并实施科学管理,后两年的产品成本每年递减20%,那么该企业产品的成本现在与原来比较(  )
A.不增不减B.增多了
C.减少了D.以原来的成本大小有关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在x(1+x)6的展开式中,含x4项的系数为(  )
A.30B.20C.15D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}{(a-\frac{1}{2})x-2a+1,x≥1}\\{{a}^{x},x<1}\end{array}\right.$,在R上为减函数,则实数a的取值范围为[$\frac{1}{4}$,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知射线θ=$\frac{π}{4}$与曲线$\left\{\begin{array}{l}{x=t}\\{y=(t-2)^{2}}\end{array}\right.$(t为参数)相交于A,B两点,则线段AB的中点的直角坐标为($\frac{5}{2}$,$\frac{5}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.f(x)=lnx+$\frac{1}{x}$+a2,g(x)=-2x3-3x2+12x-a,x>0时,f(x)>g(x)恒成立,则实数a的范围是a>2或a<-3.

查看答案和解析>>

同步练习册答案