精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)当时,求在区间上的最值;

(2)讨论函数的单调性;

(3)当时,有恒成立,求的取值范围.

【答案】(1)

(2)当时, 单调递增;当时, 单调递增,在上单调递减;当时, 上单调递减.(3)

【解析】试题分析:(1)先求导数,再求导函数零点,列表分析导数在区间上符号变化规律,确定函数最值(2)先求导数,根据导函数符号是否变化进行分类讨论: 时, 时, 时,先负后正,最后根据导数符号对应确定单调性(3)将不等式恒成立转化为对应函数最值,由(2)得,即,整理化简得,解得的取值范围.

试题解析:解:(Ⅰ)当时, ,∴.

的定义域为,∴由.

在区间上的最值只可能在 取到,而

(Ⅱ) .

①当,即时, ,∴上单调递减;

②当时, ,∴上单调递增;

③当时,由,∴(舍去)

单调递增,在上单调递减;

综上,当 上单调递增;

时, 单调递增,在上单调递减;当时, 上单调递减;

(Ⅲ)由(Ⅱ)知,当时,

即原不等式等价于整理得

,又∵,∴的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】曲线y=1+ 与直线kx﹣y﹣2k+5=0有两个交点时,实数k的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: =1(a>b>0)的离心率为 ,以E的四个顶点为顶点的四边形的面积为4 . (Ⅰ)求椭圆E的方程;
(Ⅱ)设A,B分别为椭圆E的左、右顶点,P是直线x=4上不同于点(4,0)的任意一点,若直线AP,BP分别与椭圆相交于异于A,B的点M、N,试探究,点B是否在以MN为直径的圆内?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线y2=﹣x与直线y=k(x+1)相交于A、B两点.
(1)求证:OA⊥OB;
(2)当△OAB的面积等于 时,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1.
(1)求椭圆C的标准方程;
(2)若直线l:y=kx+m与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点.求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(1﹣x)+loga(x+3)(a>0,且a≠1)
(1)求函数f(x)的定义域和值域;
(2)若函数 f(x)有最小值为﹣2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在[0,+∞)上的函数f(x)满足f(x)=3f(x+2),当x∈[0,2)时,f(x)=﹣x2+2x.设f(x)在[2n﹣2,2n)上的最大值为an(n∈N* , 且{an}的前n项和为Sn , 则Sn的取值范围是( )
A.[1,
B.[1, ]
C.[ ,2)
D.[ ,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥A﹣BCD中,△ABD,△BCD均为正三角形,且平面ABD⊥平面BCD,点O,M分别为棱BD,AC的中点,则异面直线AB与OM所成角的余弦值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学食堂定期从粮店以每吨1500元的价格购买大米,每次购进大米需支付运输费 100元.食堂每天需用大米l吨,贮存大米的费用为每吨每天2元(不满一天按一天计),假 定食堂每次均在用完大米的当天购买.
(1)该食堂隔多少天购买一次大米,可使每天支付的总费用最少?
(2)粮店提出价格优惠条件:一次购买量不少于20吨时,大米价格可享受九五折(即原价的95%),问食堂可否接受此优惠条件?请说明理由.

查看答案和解析>>

同步练习册答案