【题目】据某气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示.过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即时间t(h)内沙尘暴所经过的路程s(km).
(1)当t=4时,求s的值;
(2)将s随t变化的规律用数学关系式表示出来;
(3)若N城位于M地正南方向,且距M地650 km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.
【答案】(1)24;(2);(3)沙尘暴发生30 h后将侵袭到N城.
【解析】试题分析:(1)先求出线段OA的解析式为v=4t,然后把t=10直接代入求出此时的速度,即可求出S(t)的值;(2)先分段求出速度v与时间t的函数函数关系,再分别乘以时间即可求得对应的函数S(t)的解析式;(3)先由分段函数的解析式以及对应的定义域可以求得其最大值,发现其最大值大于650,即可下结论会侵袭到N城,再把S(t)=650代入即可求出对应的t.
试题解析:解:(1)由图像可知,当t=4时,v=3×4=12,
所以S=×4×12=24 km.
(2)当0≤t≤10时,S=·t·3t=;
当10<t≤20时,S=×10×30+30(t-10)=30t-150;
当20<t≤35时,S=×10×30+10×30+(t-20)×30-×(t-20)×2(t-20)=.
综上可知, .
(3)因为当t∈[0,10]时,Smax=×102=150<650,
当t∈(10,20]时,Smax=30×20-150=450<650,
所以当t∈(20,35]时,令,解得.因为20<t≤35,所以t=30.
故沙尘暴发生30 h后将侵袭到N城.
科目:高中数学 来源: 题型:
【题目】已知为椭圆的一个焦点,过原点的直线与椭圆交于两点,且, 的面积为.
(Ⅰ)求椭圆的离心率;
(Ⅱ)若,过点且不与坐标轴垂直的直线交椭圆于两点,线段的垂直平分线与轴交于点,求点横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,a、b、c分别为内角A、B、C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC
(1)求A的大小;
(2)若sinB+sinC=1,试判断△ABC的形状.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax3+cx(a>0),其图象在点(1,f(1))处的切线与直线 x﹣6y+21=0垂直,导函数
f′(x)的最小值为﹣12.
(1)求函数f(x)的解析式;
(2)求y=f(x)在x∈[﹣2,2]的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在原点,焦点在轴上,离心率为,若抛物线的焦点与椭圆的一个焦点重合.
(1)求椭圆的标准方程;
(2)过椭圆的左焦点,且斜率为的直线交椭圆于, 两点,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一网站营销部为统计某市网友2017年12月12日在某网店的网购情况,随机抽查了该市60名网友在该网店的网购金额情况,如表:
网购金额 (单位:千元) | 频数 | 频率 |
3 | ||
9 | ||
15 | ||
18 | ||
合计 | 60 |
若将当日网购金额不小于2千元的网友称为“网购达人”,网购金额小于2千元的网友称为“网购探者”,已知“网购达人”与“网购探者”人数的比例为.
(1)确定,,,的值,并补全频率分布直方图;
(2)试根据频率分布直方图估算这60名网友当日在该网店网购金额的平均数和中位数;若平均数和中位数至少有一个不低于2千元,则该网店当日评为“皇冠店”,试判断该网店当日能否被评为“皇冠店”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【选修4﹣1几何证明选讲】
如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E、F分别为弦AB与弦AC上的点,且BCAE=DCAF,B、E、F、C四点共圆.
(1)证明:CA是△ABC外接圆的直径;
(2)若DB=BE=EA,求过B、E、F、C四点的圆的面积与△ABC外接圆面积的比值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】阅读如下程序框图,如果输出i=5,那么在空白矩形框中应填入的语句为( )
A.S=2*i﹣2
B.S=2*i﹣1
C.S=2*I
D.S=2*i+4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com